Tutorial 8: Outputs
Interactive Notebook of the tutorial
Once an instance of GenX is run, a series of csv files describing the outputs are created and put in to a folder titled results
. This folder will appear automatically in the case folder. For a detailed description of all files, see the GenX Outputs documentation. This tutorial goes over key files in results
and visualizes some of the outputs.
Table of Contents
Let's get things started by running an instance of GenX using Run.jl
. You can skip this step if you already have a results folder you would like to analyze.
using DataFrames
using CSV
using YAML
using GraphRecipes
using Plots
using PlotlyJS
using VegaLite
using StatsPlots
case = joinpath("example_systems/1_three_zones");
include("example_systems/1_three_zones/Run.jl")
Configuring Settings
Clustering Time Series Data (Grouped)...
Reading Input CSV Files
Network.csv Successfully Read!
Demand (load) data Successfully Read!
Fuels_data.csv Successfully Read!
Thermal.csv Successfully Read.
Vre.csv Successfully Read.
Storage.csv Successfully Read.
Resource_energy_share_requirement.csv Successfully Read.
Resource_capacity_reserve_margin.csv Successfully Read.
Resource_minimum_capacity_requirement.csv Successfully Read.
Summary of resources loaded into the model:
-------------------------------------------------------
Resource type Number of resources
=======================================================
Thermal 3
VRE 4
Storage 3
=======================================================
Total number of resources: 10
-------------------------------------------------------
Generators_variability.csv Successfully Read!
Validating time basis
Minimum_capacity_requirement.csv Successfully Read!
CO2_cap.csv Successfully Read!
CSV Files Successfully Read In From /Users/mayamutic/Desktop/GenX-Tutorials/Tutorials/example_systems/1_three_zones
Configuring Solver
Loading Inputs
Reading Input CSV Files
Network.csv Successfully Read!
Demand (load) data Successfully Read!
Fuels_data.csv Successfully Read!
Summary of resources loaded into the model:
-------------------------------------------------------
Resource type Number of resources
=======================================================
Thermal 3
VRE 4
Storage 3
=======================================================
Total number of resources: 10
-------------------------------------------------------
Generators_variability.csv Successfully Read!
Validating time basis
Minimum_capacity_requirement.csv Successfully Read!
CO2_cap.csv Successfully Read!
CSV Files Successfully Read In From /Users/mayamutic/Desktop/GenX-Tutorials/Tutorials/example_systems/1_three_zones
Generating the Optimization Model
Thermal.csv Successfully Read.
Vre.csv Successfully Read.
Storage.csv Successfully Read.
Resource_energy_share_requirement.csv Successfully Read.
Resource_capacity_reserve_margin.csv Successfully Read.
Resource_minimum_capacity_requirement.csv Successfully Read.
Discharge Module
Non-served Energy Module
Investment Discharge Module
Unit Commitment Module
Fuel Module
CO2 Module
Investment Transmission Module
Transmission Module
Dispatchable Resources Module
Storage Resources Module
Storage Investment Module
Storage Core Resources Module
Storage Resources with Symmetric Charge/Discharge Capacity Module
Thermal (Unit Commitment) Resources Module
CO2 Policies Module
Minimum Capacity Requirement Module
Time elapsed for model building is
5.887781667
Solving Model
Running HiGHS 1.6.0: Copyright (c) 2023 HiGHS under MIT licence terms
Presolving model
118038 rows, 81083 cols, 466827 nonzeros
110619 rows, 73664 cols, 468369 nonzeros
Presolve : Reductions: rows 110619(-42779); columns 73664(-46475); elements 468369(-47001)
Solving the presolved LP
IPX model has 110619 rows, 73664 columns and 468369 nonzeros
Input
Number of variables: 73664
Number of free variables: 3696
Number of constraints: 110619
Number of equality constraints: 16605
Number of matrix entries: 468369
Matrix range: [4e-07, 1e+01]
RHS range: [8e-01, 4e+03]
Objective range: [1e-04, 7e+02]
Bounds range: [2e-03, 2e+01]
Preprocessing
Dualized model: no
Number of dense columns: 15
Range of scaling factors: [5.00e-01, 8.00e+00]
IPX version 1.0
Interior Point Solve
Iter P.res D.res P.obj D.obj mu Time
0 1.82e+02 5.20e+02 2.74110935e+06 -9.20003322e+06 9.39e+04 0s
1 1.19e+02 1.85e+02 -5.15491323e+07 -1.56990646e+07 5.70e+04 0s
2 1.16e+02 1.50e+02 -5.24235846e+07 -4.43639951e+07 6.32e+04 1s
3 3.82e+01 7.90e+01 -3.78240082e+07 -4.91067811e+07 2.48e+04 1s
Constructing starting basis...
4 1.50e+01 4.69e+01 -1.55669921e+07 -5.24473820e+07 1.26e+04 4s
5 1.08e+01 3.68e+01 -1.04270740e+07 -5.34777833e+07 1.03e+04 5s
6 2.02e+00 1.32e+01 1.78253836e+06 -4.42778415e+07 3.28e+03 6s
7 2.13e-01 1.56e+00 2.27050184e+06 -1.69980996e+07 4.42e+02 8s
8 1.99e-02 3.66e-01 1.38286053e+06 -4.54007601e+06 1.02e+02 9s
9 7.25e-03 1.59e-01 1.04876462e+06 -2.67941780e+06 5.28e+01 10s
10 5.00e-03 1.18e-01 9.54695852e+05 -2.19740360e+06 4.20e+01 11s
11 2.55e-03 8.92e-02 9.62825668e+05 -2.02235540e+06 3.86e+01 12s
12 1.23e-03 5.57e-02 9.06154486e+05 -1.61397732e+06 2.88e+01 13s
13 8.25e-04 4.55e-02 8.50982220e+05 -1.42601127e+06 2.47e+01 14s
14 4.67e-04 2.99e-02 7.87488727e+05 -1.12886839e+06 1.86e+01 15s
15 2.66e-04 2.09e-02 7.13648088e+05 -9.18336741e+05 1.44e+01 16s
16 1.08e-04 1.25e-02 5.49221416e+05 -6.47879126e+05 9.37e+00 17s
17 2.48e-05 7.94e-03 3.46061560e+05 -4.61304054e+05 5.71e+00 19s
18 1.01e-05 3.42e-03 1.83821789e+05 -2.00914905e+05 2.43e+00 20s
19 4.07e-06 3.05e-03 8.92521427e+04 -1.79940971e+05 1.62e+00 21s
20 2.32e-06 6.40e-04 7.78040127e+04 -5.60566929e+04 7.50e-01 22s
21 8.58e-07 2.28e-04 4.31894440e+04 -2.23356614e+04 3.58e-01 23s
22 6.57e-07 1.54e-04 4.00530649e+04 -1.69523138e+04 3.10e-01 24s
23 3.28e-07 9.35e-05 2.85728271e+04 -9.35216394e+03 2.05e-01 25s
24 3.19e-07 8.61e-05 2.84621914e+04 -8.84896370e+03 2.02e-01 27s
25 1.88e-07 7.27e-05 2.38512793e+04 -7.05855824e+03 1.67e-01 28s
26 1.25e-07 4.25e-05 2.06483772e+04 -2.29444044e+03 1.24e-01 29s
27 8.52e-08 2.94e-05 1.93840344e+04 -7.43312356e+02 1.08e-01 30s
28 4.26e-08 1.57e-05 1.55476712e+04 2.51649304e+03 7.01e-02 32s
29 3.28e-08 1.03e-05 1.48244443e+04 3.71569832e+03 5.97e-02 34s
30 1.97e-08 5.79e-06 1.34432901e+04 5.04894425e+03 4.51e-02 36s
31 1.60e-08 4.11e-06 1.29661877e+04 5.70523948e+03 3.90e-02 40s
32 1.29e-08 2.50e-06 1.25046561e+04 6.46897465e+03 3.24e-02 43s
33 1.10e-08 1.77e-06 1.21681482e+04 6.95806253e+03 2.80e-02 45s
34 9.03e-09 1.20e-06 1.17942632e+04 7.37735035e+03 2.37e-02 47s
35 8.36e-09 8.75e-07 1.16689507e+04 7.61101800e+03 2.18e-02 50s
36 5.05e-09 7.46e-07 1.09362653e+04 7.76380519e+03 1.70e-02 51s
37 2.31e-09 4.73e-07 1.04305053e+04 8.02182477e+03 1.29e-02 53s
38 1.54e-09 3.37e-07 1.01805357e+04 8.29224222e+03 1.01e-02 54s
39 1.40e-09 2.47e-07 1.01569154e+04 8.40516136e+03 9.41e-03 57s
40 1.32e-09 2.29e-07 1.01417025e+04 8.43289860e+03 9.18e-03 61s
41 1.30e-09 1.85e-07 1.01370889e+04 8.50324712e+03 8.78e-03 62s
42 1.09e-09 1.37e-07 1.00815866e+04 8.60006398e+03 7.96e-03 63s
43 8.94e-10 1.09e-07 1.00184156e+04 8.66341527e+03 7.28e-03 65s
44 7.15e-10 7.94e-08 9.96247094e+03 8.73797483e+03 6.58e-03 66s
45 3.38e-10 5.48e-08 9.81246478e+03 8.82514229e+03 5.30e-03 67s
46 1.96e-10 3.88e-08 9.73048449e+03 8.91021222e+03 4.41e-03 68s
47 1.58e-10 3.09e-08 9.70120639e+03 8.96100550e+03 3.98e-03 69s
48 8.73e-11 1.87e-08 9.63351889e+03 9.05587884e+03 3.10e-03 70s
49 4.53e-11 8.50e-09 9.58546144e+03 9.14690441e+03 2.36e-03 72s
50 3.66e-11 4.10e-09 9.56746403e+03 9.21860822e+03 1.87e-03 73s
51 2.08e-11 3.03e-09 9.52048699e+03 9.24367874e+03 1.49e-03 76s
52 1.09e-11 2.43e-09 9.49319901e+03 9.26588343e+03 1.22e-03 77s
53 5.73e-12 1.94e-09 9.47529880e+03 9.28196289e+03 1.04e-03 78s
54 5.27e-12 1.59e-09 9.46285225e+03 9.29875030e+03 8.82e-04 79s
55 3.67e-12 1.52e-09 9.45597250e+03 9.30095244e+03 8.33e-04 80s
56 1.75e-12 1.22e-09 9.45179686e+03 9.31195889e+03 7.51e-04 81s
57 3.04e-11 1.00e-09 9.44732720e+03 9.32669073e+03 6.48e-04 82s
58 2.55e-11 5.84e-10 9.43948980e+03 9.34808459e+03 4.91e-04 83s
59 2.06e-11 3.64e-10 9.43331328e+03 9.36391778e+03 3.73e-04 84s
60 5.92e-12 2.32e-10 9.43127125e+03 9.37217204e+03 3.17e-04 85s
61 5.80e-12 7.80e-11 9.42595625e+03 9.38759526e+03 2.06e-04 85s
62 2.43e-11 4.87e-11 9.42485062e+03 9.39270257e+03 1.73e-04 86s
63 6.10e-12 2.84e-11 9.42230551e+03 9.39721826e+03 1.35e-04 87s
64 3.02e-11 2.06e-11 9.41851226e+03 9.39922232e+03 1.04e-04 88s
65 7.68e-12 1.31e-11 9.41545711e+03 9.40267444e+03 6.87e-05 89s
66 3.56e-11 5.95e-12 9.41476857e+03 9.40633324e+03 4.53e-05 89s
67 2.52e-11 5.71e-12 9.41439309e+03 9.40677438e+03 4.09e-05 90s
68 6.47e-11 4.77e-12 9.41368241e+03 9.40741592e+03 3.37e-05 91s
69 1.02e-11 3.50e-12 9.41352178e+03 9.40807301e+03 2.93e-05 91s
70 1.81e-11 2.61e-12 9.41317436e+03 9.40888102e+03 2.31e-05 92s
71 4.19e-11 9.41e-13 9.41301486e+03 9.41024157e+03 1.49e-05 92s
72 2.36e-10 7.39e-13 9.41247409e+03 9.41108729e+03 7.45e-06 93s
73 3.36e-10 5.12e-13 9.41246723e+03 9.41147776e+03 5.32e-06 94s
74 1.71e-10 1.99e-13 9.41229429e+03 9.41188577e+03 2.19e-06 94s
75 3.35e-10 4.01e-13 9.41222697e+03 9.41203307e+03 1.04e-06 95s
76 1.60e-10 6.82e-13 9.41217628e+03 9.41205260e+03 6.64e-07 96s
77 5.99e-10 1.42e-12 9.41215300e+03 9.41209472e+03 3.13e-07 96s
78 6.44e-11 7.21e-13 9.41214245e+03 9.41212653e+03 8.55e-08 97s
79 6.69e-11 6.79e-13 9.41213955e+03 9.41213348e+03 3.26e-08 98s
80 4.03e-10 1.36e-12 9.41213754e+03 9.41213419e+03 1.80e-08 98s
81 3.37e-10 2.61e-12 9.41213656e+03 9.41213608e+03 2.60e-09 99s
82* 2.65e-10 6.98e-12 9.41213642e+03 9.41213636e+03 3.52e-10 99s
83* 2.52e-10 6.65e-12 9.41213641e+03 9.41213640e+03 6.97e-11 101s
84* 2.01e-10 4.96e-12 9.41213641e+03 9.41213641e+03 1.32e-11 104s
85* 1.31e-10 6.08e-12 9.41213641e+03 9.41213641e+03 1.20e-12 104s
Running crossover as requested
Primal residual before push phase: 3.02e-07
Dual residual before push phase: 4.01e-07
Number of dual pushes required: 24726
Number of primal pushes required: 3458
Summary
Runtime: 107.62s
Status interior point solve: optimal
Status crossover: optimal
objective value: 9.41213641e+03
interior solution primal residual (abs/rel): 3.75e-09 / 9.14e-13
interior solution dual residual (abs/rel): 2.40e-09 / 3.42e-12
interior solution objective gap (abs/rel): 1.95e-07 / 2.08e-11
basic solution primal infeasibility: 5.02e-14
basic solution dual infeasibility: 1.09e-15
Ipx: IPM optimal
Ipx: Crossover optimal
Solving the original LP from the solution after postsolve
Model status : Optimal
IPM iterations: 85
Crossover iterations: 2764
Objective value : 9.4121364078e+03
HiGHS run time : 107.89
LP solved for primal
Writing Output
Time elapsed for writing costs is
0.8427745
Time elapsed for writing capacity is
0.277263333
Time elapsed for writing power is
0.6167225
Time elapsed for writing charge is
0.18541725
Time elapsed for writing capacity factor is
0.235379791
Time elapsed for writing storage is
0.132649083
Time elapsed for writing curtailment is
0.155876791
Time elapsed for writing nse is
0.438298833
Time elapsed for writing power balance is
0.297414291
Time elapsed for writing transmission flows is
0.103818667
Time elapsed for writing transmission losses is
0.097776166
Time elapsed for writing network expansion is
0.080605
Time elapsed for writing emissions is
0.280204166
Time elapsed for writing reliability is
0.093714833
Time elapsed for writing storage duals is
0.391718917
Time elapsed for writing commitment is
0.085516291
Time elapsed for writing startup is
0.045873
Time elapsed for writing shutdown is
0.027687542
Time elapsed for writing fuel consumption is
0.31172675
Time elapsed for writing co2 is
0.053309291
Time elapsed for writing price is
0.056254791
Time elapsed for writing energy revenue is
0.21793425
Time elapsed for writing charging cost is
0.155090166
Time elapsed for writing subsidy is
0.244266583
Time elapsed for writing time weights is
0.061457459
Time elapsed for writing co2 cap is
0.084762792
Time elapsed for writing minimum capacity requirement is
0.090502375
Time elapsed for writing net revenue is
0.8798285
Wrote outputs to /Users/mayamutic/Desktop/GenX-Tutorials/Tutorials/example_systems/1_three_zones/results
Time elapsed for writing is
6.909353542
Below are all 33 files output by running GenX:
results = cd(readdir,joinpath(case,"results"))
33-element Vector{String}:
"CO2_prices_and_penalties.csv"
"ChargingCost.csv"
"EnergyRevenue.csv"
"FuelConsumption_plant_MMBTU.csv"
"FuelConsumption_total_MMBTU.csv"
"Fuel_cost_plant.csv"
"MinCapReq_prices_and_penalties.csv"
"NetRevenue.csv"
"RegSubsidyRevenue.csv"
"SubsidyRevenue.csv"
"capacity.csv"
"capacityfactor.csv"
"charge.csv"
⋮
"power.csv"
"power_balance.csv"
"prices.csv"
"reliability.csv"
"run_settings.yml"
"shutdown.csv"
"start.csv"
"status.csv"
"storage.csv"
"storagebal_duals.csv"
"time_weights.csv"
"tlosses.csv"
Power
The file power.csv
, shown below, contains the power output in MW discharged by each node at each time step. Note that if TimeDomainReduction
is enabled, the file will have fewer rows compared to the number of time steps in the system/Demand_data.csv
file. In this case, the corresponding Demand_data.csv
file that matches the time series in power.csv
can be found in the TDR_results
folder. The first row of power.csv
indicates the zone each node belongs to, while the second row contains the total power per year. Each subsequent row represents one time step in the series.
power = CSV.read(joinpath(case,"results/power.csv"),DataFrame,missingstring="NA")
Row | Resource | MA_natural_gas_combined_cycle | CT_natural_gas_combined_cycle | ME_natural_gas_combined_cycle | MA_solar_pv | CT_onshore_wind | CT_solar_pv | ME_onshore_wind | MA_battery | CT_battery | ME_battery | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
String15 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | |
1 | Zone | 1.0 | 2.0 | 3.0 | 1.0 | 2.0 | 2.0 | 3.0 | 1.0 | 2.0 | 3.0 | 0.0 |
2 | AnnualSum | 1.04015e7 | 3.42459e6 | 8.94975e5 | 2.47213e7 | 2.90683e7 | 2.69884e7 | 2.625e7 | 5.06354e6 | 1.45833e7 | 4.90368e6 | 1.463e8 |
3 | t1 | -0.0 | -0.0 | -0.0 | -0.0 | 8510.78 | -0.0 | 5300.61 | 0.0 | 2537.45 | 673.34 | 17022.2 |
4 | t2 | -0.0 | -0.0 | -0.0 | -0.0 | 8420.78 | -0.0 | 6282.04 | 0.0 | 2537.45 | 0.0 | 17240.3 |
5 | t3 | -0.0 | -0.0 | -0.0 | -0.0 | 8367.78 | -0.0 | 2409.84 | 0.0 | 2537.45 | 1828.24 | 15143.3 |
6 | t4 | -0.0 | -0.0 | -0.0 | -0.0 | 8353.78 | -0.0 | 2762.24 | 1591.46 | 2537.45 | 0.0 | 15244.9 |
7 | t5 | -0.0 | -0.0 | -0.0 | -0.0 | 7482.39 | -0.0 | 0.0 | 1617.46 | 2980.64 | 1384.62 | 13465.1 |
8 | t6 | -0.0 | -0.0 | -0.0 | -0.0 | 2429.93 | -0.0 | 2797.24 | 1717.96 | 5535.37 | 0.0 | 12480.5 |
9 | t7 | -0.0 | -0.0 | -0.0 | -0.0 | 11868.8 | -0.0 | 1374.73 | 1320.78 | 871.443 | 1340.67 | 16776.4 |
10 | t8 | -0.0 | -0.0 | -0.0 | -0.0 | 2656.93 | -0.0 | 0.0 | 2115.96 | 5535.37 | 1452.62 | 11760.9 |
11 | t9 | -0.0 | -0.0 | -0.0 | 3061.28 | 0.0 | 3110.8 | 2982.24 | 868.817 | 5389.44 | 0.0 | 15412.6 |
12 | t10 | -0.0 | -0.0 | -0.0 | 6100.22 | 7597.99 | 5543.69 | 0.0 | 0.0 | 0.0 | 1521.12 | 20763.0 |
13 | t11 | -0.0 | -0.0 | -0.0 | 8314.29 | 0.0 | 6341.98 | 3080.24 | 0.0 | 2458.82 | 0.0 | 20195.3 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
1839 | t1837 | -0.0 | -0.0 | -0.0 | 6712.18 | 2541.6 | 6736.37 | 305.608 | 1410.33 | 763.726 | 1427.82 | 19897.6 |
1840 | t1838 | -0.0 | -0.0 | -0.0 | 6514.15 | 0.0 | 6847.24 | 3153.24 | 0.0 | 3464.22 | 0.0 | 19978.9 |
1841 | t1839 | -0.0 | -0.0 | -0.0 | 5582.07 | 3848.88 | 6280.2 | 0.0 | 195.422 | 2048.3 | 1571.12 | 19526.0 |
1842 | t1840 | -0.0 | -0.0 | -0.0 | 3688.13 | 9349.98 | 4892.7 | 3490.61 | 1006.02 | 0.0 | 0.0 | 22427.4 |
1843 | t1841 | -0.0 | -0.0 | -0.0 | 509.22 | 8124.99 | 1351.08 | 3653.06 | 1218.5 | 2507.8 | 1828.24 | 19192.9 |
1844 | t1842 | -0.0 | -0.0 | -0.0 | -0.0 | 2918.2 | -0.0 | 6896.82 | 2194.61 | 5535.37 | 256.863 | 17801.9 |
1845 | t1843 | -0.0 | -0.0 | -0.0 | -0.0 | 6800.37 | -0.0 | 7324.66 | 1838.11 | 3950.15 | 41.9472 | 19955.2 |
1846 | t1844 | -0.0 | -0.0 | -0.0 | -0.0 | 9505.82 | -0.0 | 5683.66 | 1744.78 | 2567.93 | 838.077 | 20340.3 |
1847 | t1845 | -0.0 | -0.0 | -0.0 | -0.0 | 3491.93 | -0.0 | 5128.56 | 1597.61 | 5535.37 | 1107.49 | 16861.0 |
1848 | t1846 | -0.0 | -0.0 | -0.0 | -0.0 | 12135.6 | -0.0 | 5021.75 | 1341.11 | 1140.56 | 1125.9 | 20764.9 |
1849 | t1847 | -0.0 | -0.0 | -0.0 | -0.0 | 8875.71 | -0.0 | 3605.98 | 974.61 | 2665.48 | 1783.79 | 17905.6 |
1850 | t1848 | -0.0 | -0.0 | -0.0 | -0.0 | 13549.1 | -0.0 | 4098.0 | 541.61 | 205.31 | 1478.27 | 19872.3 |
Below is a visualization of the production over the first 168 hours, with the load demand curve from all three zones plotted on top:
# Pre-processing
tstart = 3
tend = 170
names_power = ["Solar","Natural_Gas","Battery","Wind"]
power_tot = DataFrame([power[!,5]+power[!,7] power[!,2]+power[!,3]+power[!,4] power[!,9]+power[!,10]+power[!,11] power[!,6]+power[!,8]],
["Solar","Natural_Gas","Battery","Wind"])
power_plot = DataFrame([collect(1:length(power_tot[tstart:tend,1])) power_tot[tstart:tend,1] repeat([names_power[1]],length(power_tot[tstart:tend,1]))],
["Hour","MW", "Resource_Type"]);
for i in range(2,4)
power_plot_temp = DataFrame([collect(1:length(power_tot[tstart:tend,i])) power_tot[tstart:tend,i] repeat([names_power[i]],length(power_tot[tstart:tend,i]))],["Hour","MW", "Resource_Type"])
power_plot = [power_plot; power_plot_temp]
end
demands = CSV.read(joinpath(case,"TDR_results/Demand_data.csv"),DataFrame,missingstring="NA")
demands_tot = demands[!,"Demand_MW_z1"]+demands[!,"Demand_MW_z2"]+demands[!,"Demand_MW_z3"]
power_plot[!,"Demand_Total"] = repeat(demands_tot[tstart:tend],4);
Note that since the power.csv
file is generated by running GenX with TimeDomainReduction: 1
, the demands time series must be taken from the Demand_data.csv
file located in the TDR_results
folder.
GenX also has the ability to output the reconstructed version of power generation by setting OutputFullTimeSeries: 1
in genx_settings.yml
. In this case, a second version of the power.csv
file will be created inside the results/Full_TimeSeries
folder. To plot the reconstructed version against the demand, ensure you use the Demand_data.csv
from the settings
folder, not the one in the TDR_results
folder.
Finally, if TimeDomainReduction: 0
is set, the power.csv
file will contain the full time series of power generation, and the Demand_data.csv
should be taken from the settings
folder.
power_plot |>
@vlplot()+
@vlplot(mark={:area},
x={:Hour,title="Time Step (hours)",labels="Resource_Type:n",axis={values=0:12:168}}, y={:MW,title="Demand (MW)",type="quantitative"},
color={"Resource_Type:n",scale={scheme="accent"},sort="descending"},order={field="Resource_Type:n"},width=845,height=400)+
@vlplot(mark=:line,x=:Hour,y=:Demand_Total,lables="Demand",color={datum="Demand",legend={title=nothing}},title="Resource Capacity per Hour with Demand Curve, all Zones")
We can separate it by zone in the following plot:
Zone1 = [power[2,2] power[2,5] 0 power[2,9]]
Zone2 = [power[2,3] power[2,7] power[2,6] power[2,10]]
Zone3 = [power[2,4] 0 power[2,8] power[2,11]]
colors=[:silver :yellow :deepskyblue :violetred3]
groupedbar(["Zone 1", "Zone 2", "Zone 3"],[Zone1; Zone2; Zone3], bar_position = :stack, bar_width=0.5,size=(400,450),
labels=["Natural Gas" "Solar" "Wind" "Battery"],
title="Resource Allocation in MW Per Zone",ylabel="MW",color=colors, titlefontsize=10)
Below is a heatmap for the natural gas plant in Massachusetts. It is normalized by the end capacity in capcity.csv
. To change which plant the heat map plots, change the DataFrame column in power
when defining power_cap
below, and the corresponding capacity.
capacity = CSV.read(joinpath(case,"results/capacity.csv"),DataFrame,missingstring="NA")
Period_map = CSV.read(joinpath(case,"TDR_results/Period_map.csv"),DataFrame,missingstring="NA")
# Take the EndCap and power of MA_natural_gas_combined_cycle
cap = capacity[1,"EndCap"]
power_cap = power[3:end,"MA_natural_gas_combined_cycle"]/cap;
# Reconstruction of all hours of the year from TDR
recon = []
for i in range(1,52)
index = Period_map[i,"Rep_Period_Index"]
recon_temp = power_cap[(168*index-167):(168*index)]
recon = [recon; recon_temp]
end
# Convert to matrix format
heat = recon[1:24]
for i in range(1,364)
heat = [heat recon[(i*24-23):(i*24)]]
end
Plots.heatmap(heat,yticks=0:4:24,xticks=([15:30:364;],
["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sept","Oct","Nov","Dec"]),
size=(900,200),c=:lajolla)
Cost and Revenue
The basic cost of each power plant and the revenue it generates can be found in files costs.csv
, NetRevenue.csv
,and EnergyRevenue.csv
. NetRevenue.csv
breaks down each specific cost per node in each zone, which is useful to visualize what the cost is coming from.
netrevenue = CSV.read(joinpath(case,"results/NetRevenue.csv"),DataFrame,missingstring="NA")
Row | region | Resource | zone | Cluster | R_ID | Inv_cost_MW | Inv_cost_MWh | Inv_cost_charge_MW | Fixed_OM_cost_MW | Fixed_OM_cost_MWh | Fixed_OM_cost_charge_MW | Var_OM_cost_out | Fuel_cost | Var_OM_cost_in | StartCost | Charge_cost | CO2SequestrationCost | EnergyRevenue | SubsidyRevenue | OperatingReserveRevenue | OperatingRegulationRevenue | ReserveMarginRevenue | ESRRevenue | EmissionsCost | RegSubsidyRevenue | Revenue | Cost | Profit |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
String3 | String31 | Int64 | Int64 | Int64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | |
1 | MA | MA_natural_gas_combined_cycle | 1 | 1 | 1 | 5.54734e8 | 0.0 | 0.0 | 8.72561e7 | 0.0 | 0.0 | 3.69253e7 | 2.10416e8 | 0.0 | 3.84832e7 | 0.0 | 0.0 | 2.77103e9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.84321e9 | 0.0 | 2.77103e9 | 2.77103e9 | 1.43051e-6 |
2 | CT | CT_natural_gas_combined_cycle | 2 | 1 | 2 | 1.42906e8 | 0.0 | 0.0 | 2.11911e7 | 0.0 | 0.0 | 1.22258e7 | 4.97792e7 | 0.0 | 7.75292e6 | 0.0 | 0.0 | 8.4423e8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.10375e8 | 0.0 | 8.4423e8 | 8.4423e8 | 1.19209e-7 |
3 | ME | ME_natural_gas_combined_cycle | 3 | 1 | 3 | 3.52336e7 | 0.0 | 0.0 | 8.77661e6 | 0.0 | 0.0 | 4.02739e6 | 2.26505e7 | 0.0 | 3.33663e6 | 0.0 | 0.0 | 2.19267e8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.45243e8 | 0.0 | 2.19267e8 | 2.19267e8 | 0.0 |
4 | MA | MA_solar_pv | 1 | 1 | 4 | 1.27007e9 | 0.0 | 0.0 | 2.79327e8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5494e9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5494e9 | 1.5494e9 | -2.86102e-6 |
5 | CT | CT_onshore_wind | 2 | 1 | 5 | 1.40748e9 | 0.0 | 0.0 | 6.25617e8 | 0.0 | 0.0 | 2.90683e6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.036e9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.036e9 | 2.036e9 | -5.00679e-6 |
6 | CT | CT_solar_pv | 2 | 1 | 6 | 1.35108e9 | 0.0 | 0.0 | 2.97142e8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.64822e9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.64822e9 | 1.64822e9 | 9.53674e-7 |
7 | ME | ME_onshore_wind | 3 | 1 | 7 | 1.03673e9 | 0.0 | 0.0 | 4.60821e8 | 0.0 | 0.0 | 2.625e6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.50017e9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.50017e9 | 1.50017e9 | 2.38419e-6 |
8 | MA | MA_battery | 1 | 0 | 8 | 4.29792e7 | 2.23673e8 | 0.0 | 1.07426e7 | 5.59033e7 | 0.0 | 7.59532e5 | 0.0 | 8.97367e5 | 0.0 | 1.3432e8 | 0.0 | 4.48833e8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.48833e8 | 4.69275e8 | -2.0442e7 |
9 | CT | CT_battery | 2 | 0 | 9 | 1.08405e8 | 5.73615e8 | 0.0 | 2.70957e7 | 1.43365e8 | 0.0 | 2.1875e6 | 0.0 | 2.58447e6 | 0.0 | 5.24177e8 | 0.0 | 1.31941e9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.31941e9 | 1.38143e9 | -6.20165e7 |
10 | ME | ME_battery | 3 | 0 | 10 | 3.58043e7 | 1.03994e8 | 0.0 | 8.94925e6 | 2.59915e7 | 0.0 | 7.35552e5 | 0.0 | 8.69036e5 | 0.0 | 3.81057e7 | 0.0 | 2.03732e8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.03732e8 | 2.14449e8 | -1.0717e7 |
xnames = netrevenue[!,2]
names1 = ["Investment cost" "Fixed OM cost" "Variable OM cost" "Fuel cost" "Start Cost" "Battery charge cost" "CO2 Sequestration Cost" "Revenue"]
netrev = [netrevenue[!,6]+netrevenue[!,7]+netrevenue[!,8] netrevenue[!,9]+netrevenue[!,11]+netrevenue[!,11] netrevenue[!,12]+netrevenue[!,14] netrevenue[!,13] netrevenue[!,15] netrevenue[!,16] netrevenue[!,17]]
groupedbar(xnames,netrev, bar_position = :stack, bar_width=0.9,size=(850,800),
labels=names1,title="Cost Allocation per Node with Revenue",xlabel="Node",ylabel="Cost (Dollars)",
titlefontsize=10,legend=:outerright,ylims=[0,maximum(netrevenue[!,"Revenue"])+1e8],xrotation = 90)
StatsPlots.scatter!(xnames,netrevenue[!,"Revenue"],label="Revenue",color="black")
Emissions
The file emmissions.csv
gives the total CO2 emmissions per zone for each hour GenX runs. The first three rows give the marginal CO2 abatement cost in /ton CO2.
emm1 = CSV.read(joinpath(case,"results/emissions.csv"),DataFrame)
Row | Zone | 1 | 2 | 3 | Total |
---|---|---|---|---|---|
String15 | Float64 | Float64 | Float64 | Float64 | |
1 | CO2_Price_1 | 444.921 | 0.0 | 0.0 | 0.0 |
2 | CO2_Price_2 | 0.0 | 468.668 | 0.0 | 0.0 |
3 | CO2_Price_3 | 0.0 | 0.0 | 240.86 | 0.0 |
4 | AnnualSum | 4.14279e6 | 1.30236e6 | 6.03017e5 | 6.04816e6 |
5 | t1 | 0.0 | 0.0 | 0.0 | 0.0 |
6 | t2 | 0.0 | 0.0 | 0.0 | 0.0 |
7 | t3 | 0.0 | 0.0 | 0.0 | 0.0 |
8 | t4 | 0.0 | 0.0 | 0.0 | 0.0 |
9 | t5 | 0.0 | 0.0 | 0.0 | 0.0 |
10 | t6 | 0.0 | 0.0 | 0.0 | 0.0 |
11 | t7 | 0.0 | 0.0 | 0.0 | 0.0 |
12 | t8 | 0.0 | 0.0 | 0.0 | 0.0 |
13 | t9 | 0.0 | 0.0 | 0.0 | 0.0 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
1841 | t1837 | 0.0 | 0.0 | 0.0 | 0.0 |
1842 | t1838 | 0.0 | 0.0 | 0.0 | 0.0 |
1843 | t1839 | 0.0 | 0.0 | 0.0 | 0.0 |
1844 | t1840 | 0.0 | 0.0 | 0.0 | 0.0 |
1845 | t1841 | 0.0 | 0.0 | 0.0 | 0.0 |
1846 | t1842 | 0.0 | 0.0 | 0.0 | 0.0 |
1847 | t1843 | 0.0 | 0.0 | 0.0 | 0.0 |
1848 | t1844 | 0.0 | 0.0 | 0.0 | 0.0 |
1849 | t1845 | 0.0 | 0.0 | 0.0 | 0.0 |
1850 | t1846 | 0.0 | 0.0 | 0.0 | 0.0 |
1851 | t1847 | 0.0 | 0.0 | 0.0 | 0.0 |
1852 | t1848 | 0.0 | 0.0 | 0.0 | 0.0 |
# Pre-processing
tstart = 470
tend = 1500
names_emm = ["Zone 1","Zone 2","Zone 3"]
emm_tot = DataFrame([emm1[3:end,2] emm1[3:end,3] emm1[3:end,4]],
["Zone 1","Zone 2","Zone 3"])
emm_plot = DataFrame([collect((tstart-3):(tend-3)) emm_tot[tstart:tend,1] repeat([names_emm[1]],(tend-tstart+1))],
["Hour","MW","Zone"]);
for i in range(2,3)
emm_plot_temp = DataFrame([collect((tstart-3):(tend-3)) emm_tot[tstart:tend,i] repeat([names_emm[i]],(tend-tstart+1))],["Hour","MW","Zone"])
emm_plot = [emm_plot; emm_plot_temp]
end
emm_plot |>
@vlplot(mark={:line},
x={:Hour,title="Time Step (hours)",labels="Zone:n",axis={values=tstart:24:tend}}, y={:MW,title="Emmissions (Tons)",type="quantitative"},
color={"Zone:n"},width=845,height=400,title="Emmissions per Time Step by Zone")
Let's try changing the CO2 cap, as in Tutorial 7, and plotting the resulting emmissions.
genx_settings_TZ = YAML.load(open((joinpath(case,"settings/genx_settings.yml"))))
genx_settings_TZ["CO2Cap"] = 0
YAML.write_file((joinpath(case,"settings/genx_settings.yml")), genx_settings_TZ)
include("example_systems/1_three_zones/Run.jl")
# run outside of notebook
Configuring Settings
Time Series Data Already Clustered.
Configuring Solver
Loading Inputs
Reading Input CSV Files
Network.csv Successfully Read!
Demand (load) data Successfully Read!
Fuels_data.csv Successfully Read!
Summary of resources loaded into the model:
-------------------------------------------------------
Resource type Number of resources
=======================================================
Thermal 3
VRE 4
Storage 3
=======================================================
Total number of resources: 10
-------------------------------------------------------
Thermal.csv Successfully Read.
Vre.csv Successfully Read.
Storage.csv Successfully Read.
Resource_energy_share_requirement.csv Successfully Read.
Resource_capacity_reserve_margin.csv Successfully Read.
Resource_minimum_capacity_requirement.csv Successfully Read.
Generators_variability.csv Successfully Read!
Validating time basis
Minimum_capacity_requirement.csv Successfully Read!
CSV Files Successfully Read In From /Users/mayamutic/Desktop/GenX-Tutorials/Tutorials/example_systems/1_three_zones
Generating the Optimization Model
Discharge Module
Non-served Energy Module
Investment Discharge Module
Unit Commitment Module
Fuel Module
CO2 Module
Investment Transmission Module
Transmission Module
Dispatchable Resources Module
Storage Resources Module
Storage Investment Module
Storage Core Resources Module
Storage Resources with Symmetric Charge/Discharge Capacity Module
Thermal (Unit Commitment) Resources Module
Minimum Capacity Requirement Module
Time elapsed for model building is
0.531860834
Solving Model
Running HiGHS 1.6.0: Copyright (c) 2023 HiGHS under MIT licence terms
Presolving model
118035 rows, 81083 cols, 422475 nonzeros
110878 rows, 73926 cols, 422989 nonzeros
Presolve : Reductions: rows 110878(-42517); columns 73926(-46210); elements 422989(-48026)
Solving the presolved LP
IPX model has 110878 rows, 73926 columns and 422989 nonzeros
Input
Number of variables: 73926
Number of free variables: 3696
Number of constraints: 110878
Number of equality constraints: 16867
Number of matrix entries: 422989
Matrix range: [4e-07, 1e+01]
RHS range: [8e-01, 2e+01]
Objective range: [1e-04, 7e+02]
Bounds range: [2e-03, 2e+01]
Preprocessing
Dualized model: no
Number of dense columns: 15
Range of scaling factors: [5.00e-01, 1.00e+00]
IPX version 1.0
Interior Point Solve
Iter P.res D.res P.obj D.obj mu Time
0 2.34e+01 6.62e+02 3.28242911e+06 -1.30284671e+07 1.55e+04 0s
1 1.39e+01 1.95e+02 -2.79051574e+06 -1.70869614e+07 8.32e+03 0s
2 1.34e+01 1.41e+02 -2.86489620e+06 -3.99200815e+07 8.76e+03 0s
3 4.75e+00 7.73e+01 -3.58904115e+06 -4.55608455e+07 4.46e+03 1s
Constructing starting basis...
4 2.62e+00 2.77e+01 -1.46128616e+06 -3.92821768e+07 2.06e+03 3s
5 2.29e+00 2.23e+01 -1.07522739e+06 -3.64123392e+07 1.79e+03 4s
6 1.30e+00 6.60e+00 5.76572112e+04 -2.35071885e+07 8.03e+02 6s
7 5.52e-02 1.21e+00 9.07716904e+05 -1.09217119e+07 1.39e+02 7s
8 3.19e-03 1.35e-01 4.98206547e+05 -1.86042062e+06 2.08e+01 7s
9 1.88e-04 3.20e-02 1.94049580e+05 -4.73698668e+05 5.30e+00 8s
10 5.02e-05 7.56e-03 1.21122260e+05 -1.44306243e+05 1.78e+00 9s
11 1.41e-05 1.14e-03 4.93526445e+04 -2.41004370e+04 4.23e-01 9s
12 5.61e-06 1.68e-04 3.67745870e+04 -1.32012445e+04 2.72e-01 10s
13 1.95e-06 1.01e-05 2.77016719e+04 -6.88123837e+03 1.86e-01 11s
14 9.38e-07 4.53e-06 1.71337276e+04 -1.48902435e+03 1.00e-01 13s
15 4.55e-07 2.12e-06 1.18334304e+04 1.03786061e+03 5.79e-02 14s
16 2.04e-07 1.21e-06 9.18918668e+03 2.04003217e+03 3.84e-02 15s
17 1.10e-07 6.34e-07 7.84163830e+03 3.03187846e+03 2.58e-02 17s
18 5.85e-08 3.55e-07 7.07336591e+03 3.60947669e+03 1.86e-02 19s
19 4.19e-08 1.93e-07 6.81537596e+03 4.04962353e+03 1.48e-02 22s
20 2.17e-08 1.22e-07 6.38250114e+03 4.36184309e+03 1.08e-02 26s
21 1.46e-08 8.65e-08 6.15373845e+03 4.59489784e+03 8.36e-03 28s
22 1.45e-08 8.60e-08 6.21987475e+03 4.64840404e+03 8.43e-03 31s
23 1.10e-08 6.52e-08 6.17121693e+03 4.72787295e+03 7.74e-03 33s
24 8.82e-09 4.21e-08 6.08867860e+03 4.94663843e+03 6.13e-03 35s
25 7.42e-09 1.59e-08 6.06378830e+03 5.01156108e+03 5.64e-03 37s
26 7.08e-09 2.46e-09 6.05642307e+03 5.09371090e+03 5.16e-03 38s
27 3.57e-09 1.59e-09 5.87880189e+03 5.21058424e+03 3.58e-03 40s
28 1.95e-09 1.11e-09 5.81293790e+03 5.25218415e+03 3.01e-03 41s
29 1.42e-09 7.21e-10 5.77482634e+03 5.32239130e+03 2.43e-03 43s
30 1.35e-09 6.49e-10 5.77061907e+03 5.32860331e+03 2.37e-03 45s
31 1.26e-09 5.90e-10 5.76739631e+03 5.33020034e+03 2.35e-03 46s
32 1.08e-09 4.91e-10 5.75363003e+03 5.35203400e+03 2.15e-03 47s
33 2.49e-14 4.26e-10 5.68794026e+03 5.36071156e+03 1.76e-03 47s
34 2.13e-14 2.53e-10 5.66831172e+03 5.41753142e+03 1.35e-03 48s
35 2.13e-14 1.06e-10 5.63886596e+03 5.49300645e+03 7.82e-04 49s
36 2.13e-14 5.55e-11 5.61729546e+03 5.52199336e+03 5.11e-04 51s
37 2.13e-14 2.59e-11 5.60778510e+03 5.54931828e+03 3.14e-04 52s
38 2.13e-14 1.75e-11 5.60173021e+03 5.55566214e+03 2.47e-04 53s
39 2.13e-14 1.18e-11 5.59813889e+03 5.56260835e+03 1.91e-04 54s
40 2.13e-14 1.01e-11 5.59718690e+03 5.56442962e+03 1.76e-04 55s
41 2.13e-14 1.00e-11 5.59698222e+03 5.56447950e+03 1.74e-04 55s
42 2.13e-14 4.04e-12 5.59428165e+03 5.57215354e+03 1.19e-04 56s
43 2.13e-14 2.50e-12 5.59133373e+03 5.57571709e+03 8.38e-05 56s
44 2.13e-14 1.48e-12 5.59035970e+03 5.57874298e+03 6.23e-05 56s
45 2.13e-14 1.22e-12 5.58936152e+03 5.57965257e+03 5.21e-05 57s
46 2.13e-14 1.25e-12 5.58736745e+03 5.58061357e+03 3.62e-05 57s
47 2.13e-14 5.68e-13 5.58697892e+03 5.58214126e+03 2.60e-05 57s
48 2.13e-14 5.36e-13 5.58691900e+03 5.58233212e+03 2.46e-05 58s
49 2.13e-14 3.73e-13 5.58656054e+03 5.58365417e+03 1.56e-05 58s
50 2.13e-14 3.55e-13 5.58656104e+03 5.58367145e+03 1.55e-05 58s
51 2.13e-14 2.31e-13 5.58641950e+03 5.58394090e+03 1.33e-05 59s
52 2.13e-14 2.56e-13 5.58608647e+03 5.58430397e+03 9.56e-06 59s
53 2.13e-14 1.43e-13 5.58604712e+03 5.58455329e+03 8.01e-06 59s
54 2.13e-14 3.13e-13 5.58604145e+03 5.58455679e+03 7.96e-06 59s
55 2.13e-14 1.99e-13 5.58598248e+03 5.58506295e+03 4.93e-06 60s
56 2.13e-14 2.56e-13 5.58593821e+03 5.58507236e+03 4.64e-06 60s
57 2.13e-14 1.99e-13 5.58578478e+03 5.58540690e+03 2.03e-06 60s
58 2.84e-14 2.91e-13 5.58578450e+03 5.58540754e+03 2.02e-06 61s
59 2.13e-14 2.56e-13 5.58572083e+03 5.58541744e+03 1.63e-06 61s
60 2.84e-14 2.56e-13 5.58571491e+03 5.58541894e+03 1.59e-06 61s
61 2.13e-14 1.63e-13 5.58565078e+03 5.58546281e+03 1.01e-06 61s
62 2.13e-14 3.41e-13 5.58557843e+03 5.58548803e+03 4.85e-07 62s
63 2.13e-14 3.98e-13 5.58557613e+03 5.58548563e+03 4.85e-07 62s
64 2.13e-14 3.69e-13 5.58556537e+03 5.58552541e+03 2.14e-07 62s
65 2.13e-14 3.13e-13 5.58556537e+03 5.58552559e+03 2.13e-07 62s
66 2.13e-14 1.42e-13 5.58555314e+03 5.58553125e+03 1.17e-07 63s
67 2.13e-14 1.74e-13 5.58555081e+03 5.58553284e+03 9.64e-08 63s
68 2.13e-14 2.13e-13 5.58554989e+03 5.58553484e+03 8.07e-08 63s
69 2.13e-14 5.68e-13 5.58554752e+03 5.58553671e+03 5.80e-08 63s
70 2.13e-14 4.83e-13 5.58554607e+03 5.58553831e+03 4.16e-08 64s
71 2.13e-14 2.13e-13 5.58554582e+03 5.58554198e+03 2.06e-08 64s
72 2.13e-14 8.92e-13 5.58554574e+03 5.58554196e+03 2.03e-08 64s
73 2.13e-14 1.09e-12 5.58554539e+03 5.58554200e+03 1.82e-08 64s
74 2.13e-14 3.23e-12 5.58554405e+03 5.58554312e+03 4.99e-09 65s
75 2.13e-14 5.31e-12 5.58554382e+03 5.58554334e+03 2.58e-09 65s
76 2.13e-14 7.04e-12 5.58554366e+03 5.58554353e+03 7.22e-10 65s
77* 2.84e-14 1.57e-12 5.58554362e+03 5.58554357e+03 2.79e-10 65s
78* 3.55e-14 4.18e-12 5.58554360e+03 5.58554358e+03 1.16e-10 65s
79* 3.55e-14 5.29e-12 5.58554360e+03 5.58554360e+03 2.36e-11 66s
80* 3.55e-14 5.19e-12 5.58554360e+03 5.58554360e+03 3.40e-12 66s
81* 3.55e-14 1.16e-11 5.58554360e+03 5.58554360e+03 3.27e-13 66s
82* 3.55e-14 9.05e-12 5.58554360e+03 5.58554360e+03 2.97e-14 66s
Running crossover as requested
Primal residual before push phase: 9.82e-08
Dual residual before push phase: 1.24e-07
Number of dual pushes required: 18968
Number of primal pushes required: 2204
Summary
Runtime: 66.29s
Status interior point solve: optimal
Status crossover: optimal
objective value: 5.58554360e+03
interior solution primal residual (abs/rel): 1.51e-10 / 8.54e-12
interior solution dual residual (abs/rel): 8.46e-10 / 1.20e-12
interior solution objective gap (abs/rel): 2.29e-09 / 4.10e-13
basic solution primal infeasibility: 1.43e-14
basic solution dual infeasibility: 6.89e-16
Ipx: IPM optimal
Ipx: Crossover optimal
Solving the original LP from the solution after postsolve
Model status : Optimal
IPM iterations: 82
Crossover iterations: 1447
Objective value : 5.5855435982e+03
HiGHS run time : 66.51
LP solved for primal
Writing Output
Time elapsed for writing costs is
0.099885792
Time elapsed for writing capacity is
0.000646583
Time elapsed for writing power is
0.021790625
Time elapsed for writing charge is
0.0167645
Time elapsed for writing capacity factor is
0.021259458
Time elapsed for writing storage is
0.009532667
Time elapsed for writing curtailment is
0.019054083
Time elapsed for writing nse is
0.0452305
Time elapsed for writing power balance is
0.053504209
Time elapsed for writing transmission flows is
0.004709417
Time elapsed for writing transmission losses is
0.013975458
Time elapsed for writing network expansion is
0.000157
Time elapsed for writing emissions is
0.050411042
Time elapsed for writing reliability is
0.005842667
Time elapsed for writing storage duals is
0.024307708
Time elapsed for writing commitment is
0.006124458
Time elapsed for writing startup is
0.012590917
Time elapsed for writing shutdown is
0.012514292
Time elapsed for writing fuel consumption is
0.054159667
Time elapsed for writing co2 is
0.019371417
Time elapsed for writing price is
0.005712875
Time elapsed for writing energy revenue is
0.010585041
Time elapsed for writing charging cost is
0.005354792
Time elapsed for writing subsidy is
0.000396208
Time elapsed for writing time weights is
0.000497875
Time elapsed for writing minimum capacity requirement is
0.000146875
Time elapsed for writing net revenue is
0.011134208
Wrote outputs to /Users/mayamutic/Desktop/GenX-Tutorials/Tutorials/example_systems/1_three_zones/results_1
Time elapsed for writing is
0.530491792
emm2 = CSV.read(joinpath(case,"results_1/emissions.csv"),DataFrame)
Row | Zone | 1 | 2 | 3 | Total |
---|---|---|---|---|---|
String15 | Float64 | Float64 | Float64 | Float64 | |
1 | AnnualSum | 1.68155e7 | 1.41088e7 | 4310.21 | 3.09286e7 |
2 | t1 | 997.169 | 0.0 | 0.0 | 997.169 |
3 | t2 | 997.169 | 0.0 | 0.0 | 997.169 |
4 | t3 | 997.169 | 0.0 | 0.0 | 997.169 |
5 | t4 | 997.169 | 0.0 | 0.0 | 997.169 |
6 | t5 | 997.169 | 0.0 | 0.0 | 997.169 |
7 | t6 | 997.169 | 0.0 | 0.0 | 997.169 |
8 | t7 | 997.169 | 0.0 | 0.0 | 997.169 |
9 | t8 | 997.169 | 0.0 | 0.0 | 997.169 |
10 | t9 | 997.169 | 0.0 | 0.0 | 997.169 |
11 | t10 | 1471.46 | 0.0 | 0.0 | 1471.46 |
12 | t11 | 997.169 | 0.0 | 0.0 | 997.169 |
13 | t12 | 1115.81 | 0.0 | 0.0 | 1115.81 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
1838 | t1837 | 2789.35 | 1012.99 | 0.0 | 3802.34 |
1839 | t1838 | 2835.21 | 1012.99 | 0.0 | 3848.2 |
1840 | t1839 | 2520.57 | 1012.99 | 0.0 | 3533.56 |
1841 | t1840 | 1496.47 | 445.85 | 0.0 | 1942.32 |
1842 | t1841 | 2571.26 | 1012.99 | 0.0 | 3584.25 |
1843 | t1842 | 2835.21 | 1012.99 | 0.0 | 3848.2 |
1844 | t1843 | 2835.21 | 1012.99 | 0.0 | 3848.2 |
1845 | t1844 | 2625.42 | 960.184 | 0.0 | 3585.6 |
1846 | t1845 | 2506.32 | 342.391 | 0.0 | 2848.71 |
1847 | t1846 | 2277.59 | 342.391 | 0.0 | 2619.98 |
1848 | t1847 | 1960.08 | 524.526 | 0.0 | 2484.6 |
1849 | t1848 | 1566.77 | 342.391 | 0.0 | 1909.16 |
# Pre-processing
tstart = 470
tend = 1500
names_emm = ["Zone 1","Zone 2","Zone 3"]
emm_tot2 = DataFrame([emm2[3:end,2] emm2[3:end,3] emm2[3:end,4]],
["Zone 1","Zone 2","Zone 3"])
emm_plot2 = DataFrame([collect((tstart-3):(tend-3)) emm_tot2[tstart:tend,1] repeat([names_emm[1]],(tend-tstart+1))],
["Hour","MW","Zone"]);
for i in range(2,3)
emm_plot_temp = DataFrame([collect((tstart-3):(tend-3)) emm_tot2[tstart:tend,i] repeat([names_emm[i]],(tend-tstart+1))],["Hour","MW","Zone"])
emm_plot2 = [emm_plot2; emm_plot_temp]
end
emm_plot2 |>
@vlplot(mark={:line},
x={:Hour,title="Time Step (hours)",labels="Zone:n",axis={values=tstart:24:tend}}, y={:MW,title="Emmissions (Tons)",type="quantitative"},
color={"Zone:n"},width=845,height=400,title="Emmissions per Time Step by Zone")
We can see how the emmissions, summed over all zones, compare in the following plot:
emm1sum = sum(eachcol(emm_tot));
emm2sum = sum(eachcol(emm_tot2));
Plots.plot(collect((tstart-3):(tend-3)),emm1sum[tstart:tend],size=(800,400),label="Demand Based CO2 Cap",
xlabel="Time Step (Hours)",ylabel="Emmissions (Tons)",thickness_scaling = 1.1,linewidth = 1.5,
title="Emmisions per Time Step",xticks=tstart:72:tend)
Plots.plot!(collect((tstart-3):(tend-3)),emm2sum[tstart:tend],label="No CO2 Cap",linewidth = 1.5)
Finally, set the CO2 Cap back to 2:
genx_settings_TZ["CO2Cap"] = 2
YAML.write_file((joinpath(case,"settings/genx_settings.yml")), genx_settings_TZ)