Method of Morris
GenX.MatSpread
— Typemorris(EP::Model, path::AbstractString, setup::Dict, inputs::Dict, outpath::AbstractString, OPTIMIZER)
We apply the Method of Morris developed by Morris, M., 1991 in order to identify the input parameters that produce the largest change on total system cost. Method of Morris falls under the simplest class of one-factor-at-a-time (OAT) screening techniques. It assumes l levels per input factor and generates a set of trajectories through the input space. As such, the Method of Morris generates a grid of uncertain model input parameters, $x_i, i=1, ..., k$,, where the range $[x_i^{-}, x_i^{+}$ of each uncertain input parameter i is split into l intervals of equal length. Each trajectory starts at different realizations of input parameters chosen at random and are built by successively selecting one of the inputs randomly and moving it to an adjacent level. These trajectories are used to estimate the mean and the standard deviation of each input parameter on total system cost. A high estimated mean indicates that the input parameter is important; a high estimated standard deviation indicates important interactions between that input parameter and other inputs.