Tutorial 8: Outputs

Interactive Notebook of the tutorial

Once an instance of GenX is run, a series of csv files describing the outputs are created and put in to a folder titled results. This folder will appear automatically in the case folder. For a detailed description of all files, see the GenX Outputs documentation. This tutorial goes over key files in results and visualizes some of the outputs.

Table of Contents

Let's get things started by running an instance of GenX using Run.jl. You can skip this step if you already have a results folder you would like to analyze.

using DataFrames
using CSV
using YAML
using GraphRecipes
using Plots
using PlotlyJS
using VegaLite
using StatsPlots
case = joinpath("example_systems/1_three_zones");
include("example_systems/1_three_zones/Run.jl")
Configuring Settings
Clustering Time Series Data (Grouped)...
Reading Input CSV Files
Network.csv Successfully Read!
Demand (load) data Successfully Read!
Fuels_data.csv Successfully Read!

Thermal.csv Successfully Read.
Vre.csv Successfully Read.
Storage.csv Successfully Read.
Resource_energy_share_requirement.csv Successfully Read.
Resource_capacity_reserve_margin.csv Successfully Read.
Resource_minimum_capacity_requirement.csv Successfully Read.

Summary of resources loaded into the model:
-------------------------------------------------------
	Resource type 		Number of resources
=======================================================
	Thermal        		3
	VRE            		4
	Storage        		3
=======================================================
Total number of resources: 10
-------------------------------------------------------
Generators_variability.csv Successfully Read!
Validating time basis
Minimum_capacity_requirement.csv Successfully Read!
CO2_cap.csv Successfully Read!
CSV Files Successfully Read In From /Users/mayamutic/Desktop/GenX-Tutorials/Tutorials/example_systems/1_three_zones
Configuring Solver
Loading Inputs
Reading Input CSV Files
Network.csv Successfully Read!
Demand (load) data Successfully Read!
Fuels_data.csv Successfully Read!

Summary of resources loaded into the model:
-------------------------------------------------------
	Resource type 		Number of resources
=======================================================
	Thermal        		3
	VRE            		4
	Storage        		3
=======================================================
Total number of resources: 10
-------------------------------------------------------
Generators_variability.csv Successfully Read!
Validating time basis
Minimum_capacity_requirement.csv Successfully Read!
CO2_cap.csv Successfully Read!
CSV Files Successfully Read In From /Users/mayamutic/Desktop/GenX-Tutorials/Tutorials/example_systems/1_three_zones
Generating the Optimization Model

Thermal.csv Successfully Read.
Vre.csv Successfully Read.
Storage.csv Successfully Read.
Resource_energy_share_requirement.csv Successfully Read.
Resource_capacity_reserve_margin.csv Successfully Read.
Resource_minimum_capacity_requirement.csv Successfully Read.

Discharge Module
Non-served Energy Module
Investment Discharge Module
Unit Commitment Module
Fuel Module
CO2 Module
Investment Transmission Module
Transmission Module
Dispatchable Resources Module
Storage Resources Module
Storage Investment Module
Storage Core Resources Module
Storage Resources with Symmetric Charge/Discharge Capacity Module
Thermal (Unit Commitment) Resources Module
CO2 Policies Module
Minimum Capacity Requirement Module
Time elapsed for model building is
5.887781667

Solving Model
Running HiGHS 1.6.0: Copyright (c) 2023 HiGHS under MIT licence terms
Presolving model
118038 rows, 81083 cols, 466827 nonzeros
110619 rows, 73664 cols, 468369 nonzeros
Presolve : Reductions: rows 110619(-42779); columns 73664(-46475); elements 468369(-47001)
Solving the presolved LP
IPX model has 110619 rows, 73664 columns and 468369 nonzeros
Input
    Number of variables:                                73664
    Number of free variables:                           3696
    Number of constraints:                              110619
    Number of equality constraints:                     16605
    Number of matrix entries:                           468369
    Matrix range:                                       [4e-07, 1e+01]
    RHS range:                                          [8e-01, 4e+03]
    Objective range:                                    [1e-04, 7e+02]
    Bounds range:                                       [2e-03, 2e+01]
Preprocessing
    Dualized model:                                     no
    Number of dense columns:                            15
    Range of scaling factors:                           [5.00e-01, 8.00e+00]
IPX version 1.0
Interior Point Solve
 Iter     P.res    D.res            P.obj           D.obj        mu     Time
   0   1.82e+02 5.20e+02   2.74110935e+06 -9.20003322e+06  9.39e+04       0s
   1   1.19e+02 1.85e+02  -5.15491323e+07 -1.56990646e+07  5.70e+04       0s
   2   1.16e+02 1.50e+02  -5.24235846e+07 -4.43639951e+07  6.32e+04       1s
   3   3.82e+01 7.90e+01  -3.78240082e+07 -4.91067811e+07  2.48e+04       1s
 Constructing starting basis...
   4   1.50e+01 4.69e+01  -1.55669921e+07 -5.24473820e+07  1.26e+04       4s
   5   1.08e+01 3.68e+01  -1.04270740e+07 -5.34777833e+07  1.03e+04       5s
   6   2.02e+00 1.32e+01   1.78253836e+06 -4.42778415e+07  3.28e+03       6s
   7   2.13e-01 1.56e+00   2.27050184e+06 -1.69980996e+07  4.42e+02       8s
   8   1.99e-02 3.66e-01   1.38286053e+06 -4.54007601e+06  1.02e+02       9s
   9   7.25e-03 1.59e-01   1.04876462e+06 -2.67941780e+06  5.28e+01      10s
  10   5.00e-03 1.18e-01   9.54695852e+05 -2.19740360e+06  4.20e+01      11s
  11   2.55e-03 8.92e-02   9.62825668e+05 -2.02235540e+06  3.86e+01      12s
  12   1.23e-03 5.57e-02   9.06154486e+05 -1.61397732e+06  2.88e+01      13s
  13   8.25e-04 4.55e-02   8.50982220e+05 -1.42601127e+06  2.47e+01      14s
  14   4.67e-04 2.99e-02   7.87488727e+05 -1.12886839e+06  1.86e+01      15s
  15   2.66e-04 2.09e-02   7.13648088e+05 -9.18336741e+05  1.44e+01      16s
  16   1.08e-04 1.25e-02   5.49221416e+05 -6.47879126e+05  9.37e+00      17s
  17   2.48e-05 7.94e-03   3.46061560e+05 -4.61304054e+05  5.71e+00      19s
  18   1.01e-05 3.42e-03   1.83821789e+05 -2.00914905e+05  2.43e+00      20s
  19   4.07e-06 3.05e-03   8.92521427e+04 -1.79940971e+05  1.62e+00      21s
  20   2.32e-06 6.40e-04   7.78040127e+04 -5.60566929e+04  7.50e-01      22s
  21   8.58e-07 2.28e-04   4.31894440e+04 -2.23356614e+04  3.58e-01      23s
  22   6.57e-07 1.54e-04   4.00530649e+04 -1.69523138e+04  3.10e-01      24s
  23   3.28e-07 9.35e-05   2.85728271e+04 -9.35216394e+03  2.05e-01      25s
  24   3.19e-07 8.61e-05   2.84621914e+04 -8.84896370e+03  2.02e-01      27s
  25   1.88e-07 7.27e-05   2.38512793e+04 -7.05855824e+03  1.67e-01      28s
  26   1.25e-07 4.25e-05   2.06483772e+04 -2.29444044e+03  1.24e-01      29s
  27   8.52e-08 2.94e-05   1.93840344e+04 -7.43312356e+02  1.08e-01      30s
  28   4.26e-08 1.57e-05   1.55476712e+04  2.51649304e+03  7.01e-02      32s
  29   3.28e-08 1.03e-05   1.48244443e+04  3.71569832e+03  5.97e-02      34s
  30   1.97e-08 5.79e-06   1.34432901e+04  5.04894425e+03  4.51e-02      36s
  31   1.60e-08 4.11e-06   1.29661877e+04  5.70523948e+03  3.90e-02      40s
  32   1.29e-08 2.50e-06   1.25046561e+04  6.46897465e+03  3.24e-02      43s
  33   1.10e-08 1.77e-06   1.21681482e+04  6.95806253e+03  2.80e-02      45s
  34   9.03e-09 1.20e-06   1.17942632e+04  7.37735035e+03  2.37e-02      47s
  35   8.36e-09 8.75e-07   1.16689507e+04  7.61101800e+03  2.18e-02      50s
  36   5.05e-09 7.46e-07   1.09362653e+04  7.76380519e+03  1.70e-02      51s
  37   2.31e-09 4.73e-07   1.04305053e+04  8.02182477e+03  1.29e-02      53s
  38   1.54e-09 3.37e-07   1.01805357e+04  8.29224222e+03  1.01e-02      54s
  39   1.40e-09 2.47e-07   1.01569154e+04  8.40516136e+03  9.41e-03      57s
  40   1.32e-09 2.29e-07   1.01417025e+04  8.43289860e+03  9.18e-03      61s
  41   1.30e-09 1.85e-07   1.01370889e+04  8.50324712e+03  8.78e-03      62s
  42   1.09e-09 1.37e-07   1.00815866e+04  8.60006398e+03  7.96e-03      63s
  43   8.94e-10 1.09e-07   1.00184156e+04  8.66341527e+03  7.28e-03      65s
  44   7.15e-10 7.94e-08   9.96247094e+03  8.73797483e+03  6.58e-03      66s
  45   3.38e-10 5.48e-08   9.81246478e+03  8.82514229e+03  5.30e-03      67s
  46   1.96e-10 3.88e-08   9.73048449e+03  8.91021222e+03  4.41e-03      68s
  47   1.58e-10 3.09e-08   9.70120639e+03  8.96100550e+03  3.98e-03      69s
  48   8.73e-11 1.87e-08   9.63351889e+03  9.05587884e+03  3.10e-03      70s
  49   4.53e-11 8.50e-09   9.58546144e+03  9.14690441e+03  2.36e-03      72s
  50   3.66e-11 4.10e-09   9.56746403e+03  9.21860822e+03  1.87e-03      73s
  51   2.08e-11 3.03e-09   9.52048699e+03  9.24367874e+03  1.49e-03      76s
  52   1.09e-11 2.43e-09   9.49319901e+03  9.26588343e+03  1.22e-03      77s
  53   5.73e-12 1.94e-09   9.47529880e+03  9.28196289e+03  1.04e-03      78s
  54   5.27e-12 1.59e-09   9.46285225e+03  9.29875030e+03  8.82e-04      79s
  55   3.67e-12 1.52e-09   9.45597250e+03  9.30095244e+03  8.33e-04      80s
  56   1.75e-12 1.22e-09   9.45179686e+03  9.31195889e+03  7.51e-04      81s
  57   3.04e-11 1.00e-09   9.44732720e+03  9.32669073e+03  6.48e-04      82s
  58   2.55e-11 5.84e-10   9.43948980e+03  9.34808459e+03  4.91e-04      83s
  59   2.06e-11 3.64e-10   9.43331328e+03  9.36391778e+03  3.73e-04      84s
  60   5.92e-12 2.32e-10   9.43127125e+03  9.37217204e+03  3.17e-04      85s
  61   5.80e-12 7.80e-11   9.42595625e+03  9.38759526e+03  2.06e-04      85s
  62   2.43e-11 4.87e-11   9.42485062e+03  9.39270257e+03  1.73e-04      86s
  63   6.10e-12 2.84e-11   9.42230551e+03  9.39721826e+03  1.35e-04      87s
  64   3.02e-11 2.06e-11   9.41851226e+03  9.39922232e+03  1.04e-04      88s
  65   7.68e-12 1.31e-11   9.41545711e+03  9.40267444e+03  6.87e-05      89s
  66   3.56e-11 5.95e-12   9.41476857e+03  9.40633324e+03  4.53e-05      89s
  67   2.52e-11 5.71e-12   9.41439309e+03  9.40677438e+03  4.09e-05      90s
  68   6.47e-11 4.77e-12   9.41368241e+03  9.40741592e+03  3.37e-05      91s
  69   1.02e-11 3.50e-12   9.41352178e+03  9.40807301e+03  2.93e-05      91s
  70   1.81e-11 2.61e-12   9.41317436e+03  9.40888102e+03  2.31e-05      92s
  71   4.19e-11 9.41e-13   9.41301486e+03  9.41024157e+03  1.49e-05      92s
  72   2.36e-10 7.39e-13   9.41247409e+03  9.41108729e+03  7.45e-06      93s
  73   3.36e-10 5.12e-13   9.41246723e+03  9.41147776e+03  5.32e-06      94s
  74   1.71e-10 1.99e-13   9.41229429e+03  9.41188577e+03  2.19e-06      94s
  75   3.35e-10 4.01e-13   9.41222697e+03  9.41203307e+03  1.04e-06      95s
  76   1.60e-10 6.82e-13   9.41217628e+03  9.41205260e+03  6.64e-07      96s
  77   5.99e-10 1.42e-12   9.41215300e+03  9.41209472e+03  3.13e-07      96s
  78   6.44e-11 7.21e-13   9.41214245e+03  9.41212653e+03  8.55e-08      97s
  79   6.69e-11 6.79e-13   9.41213955e+03  9.41213348e+03  3.26e-08      98s
  80   4.03e-10 1.36e-12   9.41213754e+03  9.41213419e+03  1.80e-08      98s
  81   3.37e-10 2.61e-12   9.41213656e+03  9.41213608e+03  2.60e-09      99s
  82*  2.65e-10 6.98e-12   9.41213642e+03  9.41213636e+03  3.52e-10      99s
  83*  2.52e-10 6.65e-12   9.41213641e+03  9.41213640e+03  6.97e-11     101s
  84*  2.01e-10 4.96e-12   9.41213641e+03  9.41213641e+03  1.32e-11     104s
  85*  1.31e-10 6.08e-12   9.41213641e+03  9.41213641e+03  1.20e-12     104s
Running crossover as requested
    Primal residual before push phase:                  3.02e-07
    Dual residual before push phase:                    4.01e-07
    Number of dual pushes required:                     24726
    Number of primal pushes required:                   3458
Summary
    Runtime:                                            107.62s
    Status interior point solve:                        optimal
    Status crossover:                                   optimal
    objective value:                                    9.41213641e+03
    interior solution primal residual (abs/rel):        3.75e-09 / 9.14e-13
    interior solution dual residual (abs/rel):          2.40e-09 / 3.42e-12
    interior solution objective gap (abs/rel):          1.95e-07 / 2.08e-11
    basic solution primal infeasibility:                5.02e-14
    basic solution dual infeasibility:                  1.09e-15
Ipx: IPM       optimal
Ipx: Crossover optimal
Solving the original LP from the solution after postsolve
Model   status      : Optimal
IPM       iterations: 85
Crossover iterations: 2764
Objective value     :  9.4121364078e+03
HiGHS run time      :        107.89
LP solved for primal

Writing Output
Time elapsed for writing costs is
0.8427745
Time elapsed for writing capacity is
0.277263333
Time elapsed for writing power is
0.6167225
Time elapsed for writing charge is
0.18541725
Time elapsed for writing capacity factor is
0.235379791
Time elapsed for writing storage is
0.132649083
Time elapsed for writing curtailment is
0.155876791
Time elapsed for writing nse is
0.438298833
Time elapsed for writing power balance is
0.297414291
Time elapsed for writing transmission flows is
0.103818667
Time elapsed for writing transmission losses is
0.097776166
Time elapsed for writing network expansion is
0.080605
Time elapsed for writing emissions is
0.280204166
Time elapsed for writing reliability is
0.093714833
Time elapsed for writing storage duals is
0.391718917
Time elapsed for writing commitment is
0.085516291
Time elapsed for writing startup is
0.045873
Time elapsed for writing shutdown is
0.027687542
Time elapsed for writing fuel consumption is
0.31172675
Time elapsed for writing co2 is
0.053309291
Time elapsed for writing price is
0.056254791
Time elapsed for writing energy revenue is
0.21793425
Time elapsed for writing charging cost is
0.155090166
Time elapsed for writing subsidy is
0.244266583
Time elapsed for writing time weights is
0.061457459
Time elapsed for writing co2 cap is
0.084762792
Time elapsed for writing minimum capacity requirement is
0.090502375
Time elapsed for writing net revenue is
0.8798285
Wrote outputs to /Users/mayamutic/Desktop/GenX-Tutorials/Tutorials/example_systems/1_three_zones/results
Time elapsed for writing is
6.909353542

Below are all 33 files output by running GenX:

results = cd(readdir,joinpath(case,"results"))
33-element Vector{String}:
 "CO2_prices_and_penalties.csv"
 "ChargingCost.csv"
 "EnergyRevenue.csv"
 "FuelConsumption_plant_MMBTU.csv"
 "FuelConsumption_total_MMBTU.csv"
 "Fuel_cost_plant.csv"
 "MinCapReq_prices_and_penalties.csv"
 "NetRevenue.csv"
 "RegSubsidyRevenue.csv"
 "SubsidyRevenue.csv"
 "capacity.csv"
 "capacityfactor.csv"
 "charge.csv"
 ⋮
 "power.csv"
 "power_balance.csv"
 "prices.csv"
 "reliability.csv"
 "run_settings.yml"
 "shutdown.csv"
 "start.csv"
 "status.csv"
 "storage.csv"
 "storagebal_duals.csv"
 "time_weights.csv"
 "tlosses.csv"

Power

The file power.csv, shown below, contains the power output in MW discharged by each node at each time step. Note that if TimeDomainReduction is enabled, the file will have fewer rows compared to the number of time steps in the system/Demand_data.csv file. In this case, the corresponding Demand_data.csv file that matches the time series in power.csv can be found in the TDR_results folder. The first row of power.csv indicates the zone each node belongs to, while the second row contains the total power per year. Each subsequent row represents one time step in the series.

power =  CSV.read(joinpath(case,"results/power.csv"),DataFrame,missingstring="NA")
1850×12 DataFrame
1825 rows omitted
RowResourceMA_natural_gas_combined_cycleCT_natural_gas_combined_cycleME_natural_gas_combined_cycleMA_solar_pvCT_onshore_windCT_solar_pvME_onshore_windMA_batteryCT_batteryME_batteryTotal
String15Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
1Zone1.02.03.01.02.02.03.01.02.03.00.0
2AnnualSum1.04015e73.42459e68.94975e52.47213e72.90683e72.69884e72.625e75.06354e61.45833e74.90368e61.463e8
3t1-0.0-0.0-0.0-0.08510.78-0.05300.610.02537.45673.3417022.2
4t2-0.0-0.0-0.0-0.08420.78-0.06282.040.02537.450.017240.3
5t3-0.0-0.0-0.0-0.08367.78-0.02409.840.02537.451828.2415143.3
6t4-0.0-0.0-0.0-0.08353.78-0.02762.241591.462537.450.015244.9
7t5-0.0-0.0-0.0-0.07482.39-0.00.01617.462980.641384.6213465.1
8t6-0.0-0.0-0.0-0.02429.93-0.02797.241717.965535.370.012480.5
9t7-0.0-0.0-0.0-0.011868.8-0.01374.731320.78871.4431340.6716776.4
10t8-0.0-0.0-0.0-0.02656.93-0.00.02115.965535.371452.6211760.9
11t9-0.0-0.0-0.03061.280.03110.82982.24868.8175389.440.015412.6
12t10-0.0-0.0-0.06100.227597.995543.690.00.00.01521.1220763.0
13t11-0.0-0.0-0.08314.290.06341.983080.240.02458.820.020195.3
1839t1837-0.0-0.0-0.06712.182541.66736.37305.6081410.33763.7261427.8219897.6
1840t1838-0.0-0.0-0.06514.150.06847.243153.240.03464.220.019978.9
1841t1839-0.0-0.0-0.05582.073848.886280.20.0195.4222048.31571.1219526.0
1842t1840-0.0-0.0-0.03688.139349.984892.73490.611006.020.00.022427.4
1843t1841-0.0-0.0-0.0509.228124.991351.083653.061218.52507.81828.2419192.9
1844t1842-0.0-0.0-0.0-0.02918.2-0.06896.822194.615535.37256.86317801.9
1845t1843-0.0-0.0-0.0-0.06800.37-0.07324.661838.113950.1541.947219955.2
1846t1844-0.0-0.0-0.0-0.09505.82-0.05683.661744.782567.93838.07720340.3
1847t1845-0.0-0.0-0.0-0.03491.93-0.05128.561597.615535.371107.4916861.0
1848t1846-0.0-0.0-0.0-0.012135.6-0.05021.751341.111140.561125.920764.9
1849t1847-0.0-0.0-0.0-0.08875.71-0.03605.98974.612665.481783.7917905.6
1850t1848-0.0-0.0-0.0-0.013549.1-0.04098.0541.61205.311478.2719872.3

Below is a visualization of the production over the first 168 hours, with the load demand curve from all three zones plotted on top:

# Pre-processing
tstart = 3
tend = 170
names_power = ["Solar","Natural_Gas","Battery","Wind"]

power_tot = DataFrame([power[!,5]+power[!,7] power[!,2]+power[!,3]+power[!,4] power[!,9]+power[!,10]+power[!,11] power[!,6]+power[!,8]],
    ["Solar","Natural_Gas","Battery","Wind"])

power_plot = DataFrame([collect(1:length(power_tot[tstart:tend,1])) power_tot[tstart:tend,1] repeat([names_power[1]],length(power_tot[tstart:tend,1]))],
    ["Hour","MW", "Resource_Type"]);

for i in range(2,4)
    power_plot_temp = DataFrame([collect(1:length(power_tot[tstart:tend,i])) power_tot[tstart:tend,i] repeat([names_power[i]],length(power_tot[tstart:tend,i]))],["Hour","MW", "Resource_Type"])
    power_plot = [power_plot; power_plot_temp]
end

demands =  CSV.read(joinpath(case,"TDR_results/Demand_data.csv"),DataFrame,missingstring="NA")
demands_tot = demands[!,"Demand_MW_z1"]+demands[!,"Demand_MW_z2"]+demands[!,"Demand_MW_z3"]
power_plot[!,"Demand_Total"] = repeat(demands_tot[tstart:tend],4);

Note that since the power.csv file is generated by running GenX with TimeDomainReduction: 1, the demands time series must be taken from the Demand_data.csv file located in the TDR_results folder.

GenX also has the ability to output the reconstructed version of power generation by setting OutputFullTimeSeries: 1 in genx_settings.yml. In this case, a second version of the power.csv file will be created inside the results/Full_TimeSeries folder. To plot the reconstructed version against the demand, ensure you use the Demand_data.csv from the settings folder, not the one in the TDR_results folder.

Finally, if TimeDomainReduction: 0 is set, the power.csv file will contain the full time series of power generation, and the Demand_data.csv should be taken from the settings folder.

power_plot  |>
@vlplot()+
@vlplot(mark={:area},
    x={:Hour,title="Time Step (hours)",labels="Resource_Type:n",axis={values=0:12:168}}, y={:MW,title="Demand (MW)",type="quantitative"},
    color={"Resource_Type:n",scale={scheme="accent"},sort="descending"},order={field="Resource_Type:n"},width=845,height=400)+
@vlplot(mark=:line,x=:Hour,y=:Demand_Total,lables="Demand",color={datum="Demand",legend={title=nothing}},title="Resource Capacity per Hour with Demand Curve, all Zones")

svg

We can separate it by zone in the following plot:

Zone1 = [power[2,2] power[2,5] 0 power[2,9]]
Zone2 = [power[2,3] power[2,7] power[2,6] power[2,10]]
Zone3 = [power[2,4] 0 power[2,8] power[2,11]]

colors=[:silver :yellow :deepskyblue :violetred3]

groupedbar(["Zone 1", "Zone 2", "Zone 3"],[Zone1; Zone2; Zone3], bar_position = :stack, bar_width=0.5,size=(400,450),
    labels=["Natural Gas" "Solar" "Wind" "Battery"],
    title="Resource Allocation in MW Per Zone",ylabel="MW",color=colors, titlefontsize=10)

svg

Below is a heatmap for the natural gas plant in Massachusetts. It is normalized by the end capacity in capcity.csv. To change which plant the heat map plots, change the DataFrame column in power when defining power_cap below, and the corresponding capacity.

capacity = CSV.read(joinpath(case,"results/capacity.csv"),DataFrame,missingstring="NA")
Period_map = CSV.read(joinpath(case,"TDR_results/Period_map.csv"),DataFrame,missingstring="NA")

# Take the EndCap and power of MA_natural_gas_combined_cycle
cap = capacity[1,"EndCap"]
power_cap = power[3:end,"MA_natural_gas_combined_cycle"]/cap;

# Reconstruction of all hours of the year from TDR
recon = []
for i in range(1,52)
    index = Period_map[i,"Rep_Period_Index"]
    recon_temp = power_cap[(168*index-167):(168*index)]
    recon = [recon; recon_temp]
end

# Convert to matrix format 
heat = recon[1:24]
for i in range(1,364)
    heat = [heat recon[(i*24-23):(i*24)]]
end
Plots.heatmap(heat,yticks=0:4:24,xticks=([15:30:364;],
        ["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sept","Oct","Nov","Dec"]),
    size=(900,200),c=:lajolla)

svg

Cost and Revenue

The basic cost of each power plant and the revenue it generates can be found in files costs.csv, NetRevenue.csv,and EnergyRevenue.csv. NetRevenue.csv breaks down each specific cost per node in each zone, which is useful to visualize what the cost is coming from.

netrevenue =  CSV.read(joinpath(case,"results/NetRevenue.csv"),DataFrame,missingstring="NA")
10×28 DataFrame
RowregionResourcezoneClusterR_IDInv_cost_MWInv_cost_MWhInv_cost_charge_MWFixed_OM_cost_MWFixed_OM_cost_MWhFixed_OM_cost_charge_MWVar_OM_cost_outFuel_costVar_OM_cost_inStartCostCharge_costCO2SequestrationCostEnergyRevenueSubsidyRevenueOperatingReserveRevenueOperatingRegulationRevenueReserveMarginRevenueESRRevenueEmissionsCostRegSubsidyRevenueRevenueCostProfit
String3String31Int64Int64Int64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
1MAMA_natural_gas_combined_cycle1115.54734e80.00.08.72561e70.00.03.69253e72.10416e80.03.84832e70.00.02.77103e90.00.00.00.00.01.84321e90.02.77103e92.77103e91.43051e-6
2CTCT_natural_gas_combined_cycle2121.42906e80.00.02.11911e70.00.01.22258e74.97792e70.07.75292e60.00.08.4423e80.00.00.00.00.06.10375e80.08.4423e88.4423e81.19209e-7
3MEME_natural_gas_combined_cycle3133.52336e70.00.08.77661e60.00.04.02739e62.26505e70.03.33663e60.00.02.19267e80.00.00.00.00.01.45243e80.02.19267e82.19267e80.0
4MAMA_solar_pv1141.27007e90.00.02.79327e80.00.00.00.00.00.00.00.01.5494e90.00.00.00.00.00.00.01.5494e91.5494e9-2.86102e-6
5CTCT_onshore_wind2151.40748e90.00.06.25617e80.00.02.90683e60.00.00.00.00.02.036e90.00.00.00.00.00.00.02.036e92.036e9-5.00679e-6
6CTCT_solar_pv2161.35108e90.00.02.97142e80.00.00.00.00.00.00.00.01.64822e90.00.00.00.00.00.00.01.64822e91.64822e99.53674e-7
7MEME_onshore_wind3171.03673e90.00.04.60821e80.00.02.625e60.00.00.00.00.01.50017e90.00.00.00.00.00.00.01.50017e91.50017e92.38419e-6
8MAMA_battery1084.29792e72.23673e80.01.07426e75.59033e70.07.59532e50.08.97367e50.01.3432e80.04.48833e80.00.00.00.00.00.00.04.48833e84.69275e8-2.0442e7
9CTCT_battery2091.08405e85.73615e80.02.70957e71.43365e80.02.1875e60.02.58447e60.05.24177e80.01.31941e90.00.00.00.00.00.00.01.31941e91.38143e9-6.20165e7
10MEME_battery30103.58043e71.03994e80.08.94925e62.59915e70.07.35552e50.08.69036e50.03.81057e70.02.03732e80.00.00.00.00.00.00.02.03732e82.14449e8-1.0717e7
xnames = netrevenue[!,2]
names1 =  ["Investment cost" "Fixed OM cost" "Variable OM cost" "Fuel cost" "Start Cost" "Battery charge cost" "CO2 Sequestration Cost" "Revenue"]

netrev = [netrevenue[!,6]+netrevenue[!,7]+netrevenue[!,8] netrevenue[!,9]+netrevenue[!,11]+netrevenue[!,11] netrevenue[!,12]+netrevenue[!,14] netrevenue[!,13] netrevenue[!,15] netrevenue[!,16] netrevenue[!,17]]

groupedbar(xnames,netrev, bar_position = :stack, bar_width=0.9,size=(850,800),
    labels=names1,title="Cost Allocation per Node with Revenue",xlabel="Node",ylabel="Cost (Dollars)", 
    titlefontsize=10,legend=:outerright,ylims=[0,maximum(netrevenue[!,"Revenue"])+1e8],xrotation = 90)
StatsPlots.scatter!(xnames,netrevenue[!,"Revenue"],label="Revenue",color="black")

svg

Emissions

The file emmissions.csv gives the total CO2 emmissions per zone for each hour GenX runs. The first three rows give the marginal CO2 abatement cost in /ton CO2.

emm1 =  CSV.read(joinpath(case,"results/emissions.csv"),DataFrame)
1852×5 DataFrame
1827 rows omitted
RowZone123Total
String15Float64Float64Float64Float64
1CO2_Price_1444.9210.00.00.0
2CO2_Price_20.0468.6680.00.0
3CO2_Price_30.00.0240.860.0
4AnnualSum4.14279e61.30236e66.03017e56.04816e6
5t10.00.00.00.0
6t20.00.00.00.0
7t30.00.00.00.0
8t40.00.00.00.0
9t50.00.00.00.0
10t60.00.00.00.0
11t70.00.00.00.0
12t80.00.00.00.0
13t90.00.00.00.0
1841t18370.00.00.00.0
1842t18380.00.00.00.0
1843t18390.00.00.00.0
1844t18400.00.00.00.0
1845t18410.00.00.00.0
1846t18420.00.00.00.0
1847t18430.00.00.00.0
1848t18440.00.00.00.0
1849t18450.00.00.00.0
1850t18460.00.00.00.0
1851t18470.00.00.00.0
1852t18480.00.00.00.0
# Pre-processing
tstart = 470
tend = 1500
names_emm = ["Zone 1","Zone 2","Zone 3"]

emm_tot = DataFrame([emm1[3:end,2] emm1[3:end,3] emm1[3:end,4]],
    ["Zone 1","Zone 2","Zone 3"])

emm_plot = DataFrame([collect((tstart-3):(tend-3)) emm_tot[tstart:tend,1] repeat([names_emm[1]],(tend-tstart+1))],
    ["Hour","MW","Zone"]);

for i in range(2,3)
    emm_plot_temp = DataFrame([collect((tstart-3):(tend-3)) emm_tot[tstart:tend,i] repeat([names_emm[i]],(tend-tstart+1))],["Hour","MW","Zone"])
    emm_plot = [emm_plot; emm_plot_temp]
end
emm_plot  |>
@vlplot(mark={:line},
    x={:Hour,title="Time Step (hours)",labels="Zone:n",axis={values=tstart:24:tend}}, y={:MW,title="Emmissions (Tons)",type="quantitative"},
    color={"Zone:n"},width=845,height=400,title="Emmissions per Time Step by Zone")

svg

Let's try changing the CO2 cap, as in Tutorial 7, and plotting the resulting emmissions.

genx_settings_TZ = YAML.load(open((joinpath(case,"settings/genx_settings.yml"))))
genx_settings_TZ["CO2Cap"] = 0
YAML.write_file((joinpath(case,"settings/genx_settings.yml")), genx_settings_TZ)

include("example_systems/1_three_zones/Run.jl")

# run outside of notebook
Configuring Settings
Time Series Data Already Clustered.
Configuring Solver
Loading Inputs
Reading Input CSV Files
Network.csv Successfully Read!
Demand (load) data Successfully Read!
Fuels_data.csv Successfully Read!

Summary of resources loaded into the model:
-------------------------------------------------------
	Resource type 		Number of resources
=======================================================
	Thermal        		3
	VRE            		4
	Storage        		3
=======================================================
Total number of resources: 10
-------------------------------------------------------

Thermal.csv Successfully Read.
Vre.csv Successfully Read.
Storage.csv Successfully Read.
Resource_energy_share_requirement.csv Successfully Read.
Resource_capacity_reserve_margin.csv Successfully Read.
Resource_minimum_capacity_requirement.csv Successfully Read.
Generators_variability.csv Successfully Read!
Validating time basis
Minimum_capacity_requirement.csv Successfully Read!
CSV Files Successfully Read In From /Users/mayamutic/Desktop/GenX-Tutorials/Tutorials/example_systems/1_three_zones
Generating the Optimization Model
Discharge Module
Non-served Energy Module
Investment Discharge Module
Unit Commitment Module
Fuel Module
CO2 Module
Investment Transmission Module
Transmission Module
Dispatchable Resources Module
Storage Resources Module
Storage Investment Module
Storage Core Resources Module
Storage Resources with Symmetric Charge/Discharge Capacity Module
Thermal (Unit Commitment) Resources Module
Minimum Capacity Requirement Module
Time elapsed for model building is
0.531860834

Solving Model
Running HiGHS 1.6.0: Copyright (c) 2023 HiGHS under MIT licence terms
Presolving model
118035 rows, 81083 cols, 422475 nonzeros
110878 rows, 73926 cols, 422989 nonzeros
Presolve : Reductions: rows 110878(-42517); columns 73926(-46210); elements 422989(-48026)
Solving the presolved LP
IPX model has 110878 rows, 73926 columns and 422989 nonzeros
Input
    Number of variables:                                73926
    Number of free variables:                           3696
    Number of constraints:                              110878
    Number of equality constraints:                     16867
    Number of matrix entries:                           422989
    Matrix range:                                       [4e-07, 1e+01]
    RHS range:                                          [8e-01, 2e+01]
    Objective range:                                    [1e-04, 7e+02]
    Bounds range:                                       [2e-03, 2e+01]
Preprocessing
    Dualized model:                                     no
    Number of dense columns:                            15
    Range of scaling factors:                           [5.00e-01, 1.00e+00]
IPX version 1.0
Interior Point Solve
 Iter     P.res    D.res            P.obj           D.obj        mu     Time
   0   2.34e+01 6.62e+02   3.28242911e+06 -1.30284671e+07  1.55e+04       0s
   1   1.39e+01 1.95e+02  -2.79051574e+06 -1.70869614e+07  8.32e+03       0s
   2   1.34e+01 1.41e+02  -2.86489620e+06 -3.99200815e+07  8.76e+03       0s
   3   4.75e+00 7.73e+01  -3.58904115e+06 -4.55608455e+07  4.46e+03       1s
 Constructing starting basis...
   4   2.62e+00 2.77e+01  -1.46128616e+06 -3.92821768e+07  2.06e+03       3s
   5   2.29e+00 2.23e+01  -1.07522739e+06 -3.64123392e+07  1.79e+03       4s
   6   1.30e+00 6.60e+00   5.76572112e+04 -2.35071885e+07  8.03e+02       6s
   7   5.52e-02 1.21e+00   9.07716904e+05 -1.09217119e+07  1.39e+02       7s
   8   3.19e-03 1.35e-01   4.98206547e+05 -1.86042062e+06  2.08e+01       7s
   9   1.88e-04 3.20e-02   1.94049580e+05 -4.73698668e+05  5.30e+00       8s
  10   5.02e-05 7.56e-03   1.21122260e+05 -1.44306243e+05  1.78e+00       9s
  11   1.41e-05 1.14e-03   4.93526445e+04 -2.41004370e+04  4.23e-01       9s
  12   5.61e-06 1.68e-04   3.67745870e+04 -1.32012445e+04  2.72e-01      10s
  13   1.95e-06 1.01e-05   2.77016719e+04 -6.88123837e+03  1.86e-01      11s
  14   9.38e-07 4.53e-06   1.71337276e+04 -1.48902435e+03  1.00e-01      13s
  15   4.55e-07 2.12e-06   1.18334304e+04  1.03786061e+03  5.79e-02      14s
  16   2.04e-07 1.21e-06   9.18918668e+03  2.04003217e+03  3.84e-02      15s
  17   1.10e-07 6.34e-07   7.84163830e+03  3.03187846e+03  2.58e-02      17s
  18   5.85e-08 3.55e-07   7.07336591e+03  3.60947669e+03  1.86e-02      19s
  19   4.19e-08 1.93e-07   6.81537596e+03  4.04962353e+03  1.48e-02      22s
  20   2.17e-08 1.22e-07   6.38250114e+03  4.36184309e+03  1.08e-02      26s
  21   1.46e-08 8.65e-08   6.15373845e+03  4.59489784e+03  8.36e-03      28s
  22   1.45e-08 8.60e-08   6.21987475e+03  4.64840404e+03  8.43e-03      31s
  23   1.10e-08 6.52e-08   6.17121693e+03  4.72787295e+03  7.74e-03      33s
  24   8.82e-09 4.21e-08   6.08867860e+03  4.94663843e+03  6.13e-03      35s
  25   7.42e-09 1.59e-08   6.06378830e+03  5.01156108e+03  5.64e-03      37s
  26   7.08e-09 2.46e-09   6.05642307e+03  5.09371090e+03  5.16e-03      38s
  27   3.57e-09 1.59e-09   5.87880189e+03  5.21058424e+03  3.58e-03      40s
  28   1.95e-09 1.11e-09   5.81293790e+03  5.25218415e+03  3.01e-03      41s
  29   1.42e-09 7.21e-10   5.77482634e+03  5.32239130e+03  2.43e-03      43s
  30   1.35e-09 6.49e-10   5.77061907e+03  5.32860331e+03  2.37e-03      45s
  31   1.26e-09 5.90e-10   5.76739631e+03  5.33020034e+03  2.35e-03      46s
  32   1.08e-09 4.91e-10   5.75363003e+03  5.35203400e+03  2.15e-03      47s
  33   2.49e-14 4.26e-10   5.68794026e+03  5.36071156e+03  1.76e-03      47s
  34   2.13e-14 2.53e-10   5.66831172e+03  5.41753142e+03  1.35e-03      48s
  35   2.13e-14 1.06e-10   5.63886596e+03  5.49300645e+03  7.82e-04      49s
  36   2.13e-14 5.55e-11   5.61729546e+03  5.52199336e+03  5.11e-04      51s
  37   2.13e-14 2.59e-11   5.60778510e+03  5.54931828e+03  3.14e-04      52s
  38   2.13e-14 1.75e-11   5.60173021e+03  5.55566214e+03  2.47e-04      53s
  39   2.13e-14 1.18e-11   5.59813889e+03  5.56260835e+03  1.91e-04      54s
  40   2.13e-14 1.01e-11   5.59718690e+03  5.56442962e+03  1.76e-04      55s
  41   2.13e-14 1.00e-11   5.59698222e+03  5.56447950e+03  1.74e-04      55s
  42   2.13e-14 4.04e-12   5.59428165e+03  5.57215354e+03  1.19e-04      56s
  43   2.13e-14 2.50e-12   5.59133373e+03  5.57571709e+03  8.38e-05      56s
  44   2.13e-14 1.48e-12   5.59035970e+03  5.57874298e+03  6.23e-05      56s
  45   2.13e-14 1.22e-12   5.58936152e+03  5.57965257e+03  5.21e-05      57s
  46   2.13e-14 1.25e-12   5.58736745e+03  5.58061357e+03  3.62e-05      57s
  47   2.13e-14 5.68e-13   5.58697892e+03  5.58214126e+03  2.60e-05      57s
  48   2.13e-14 5.36e-13   5.58691900e+03  5.58233212e+03  2.46e-05      58s
  49   2.13e-14 3.73e-13   5.58656054e+03  5.58365417e+03  1.56e-05      58s
  50   2.13e-14 3.55e-13   5.58656104e+03  5.58367145e+03  1.55e-05      58s
  51   2.13e-14 2.31e-13   5.58641950e+03  5.58394090e+03  1.33e-05      59s
  52   2.13e-14 2.56e-13   5.58608647e+03  5.58430397e+03  9.56e-06      59s
  53   2.13e-14 1.43e-13   5.58604712e+03  5.58455329e+03  8.01e-06      59s
  54   2.13e-14 3.13e-13   5.58604145e+03  5.58455679e+03  7.96e-06      59s
  55   2.13e-14 1.99e-13   5.58598248e+03  5.58506295e+03  4.93e-06      60s
  56   2.13e-14 2.56e-13   5.58593821e+03  5.58507236e+03  4.64e-06      60s
  57   2.13e-14 1.99e-13   5.58578478e+03  5.58540690e+03  2.03e-06      60s
  58   2.84e-14 2.91e-13   5.58578450e+03  5.58540754e+03  2.02e-06      61s
  59   2.13e-14 2.56e-13   5.58572083e+03  5.58541744e+03  1.63e-06      61s
  60   2.84e-14 2.56e-13   5.58571491e+03  5.58541894e+03  1.59e-06      61s
  61   2.13e-14 1.63e-13   5.58565078e+03  5.58546281e+03  1.01e-06      61s
  62   2.13e-14 3.41e-13   5.58557843e+03  5.58548803e+03  4.85e-07      62s
  63   2.13e-14 3.98e-13   5.58557613e+03  5.58548563e+03  4.85e-07      62s
  64   2.13e-14 3.69e-13   5.58556537e+03  5.58552541e+03  2.14e-07      62s
  65   2.13e-14 3.13e-13   5.58556537e+03  5.58552559e+03  2.13e-07      62s
  66   2.13e-14 1.42e-13   5.58555314e+03  5.58553125e+03  1.17e-07      63s
  67   2.13e-14 1.74e-13   5.58555081e+03  5.58553284e+03  9.64e-08      63s
  68   2.13e-14 2.13e-13   5.58554989e+03  5.58553484e+03  8.07e-08      63s
  69   2.13e-14 5.68e-13   5.58554752e+03  5.58553671e+03  5.80e-08      63s
  70   2.13e-14 4.83e-13   5.58554607e+03  5.58553831e+03  4.16e-08      64s
  71   2.13e-14 2.13e-13   5.58554582e+03  5.58554198e+03  2.06e-08      64s
  72   2.13e-14 8.92e-13   5.58554574e+03  5.58554196e+03  2.03e-08      64s
  73   2.13e-14 1.09e-12   5.58554539e+03  5.58554200e+03  1.82e-08      64s
  74   2.13e-14 3.23e-12   5.58554405e+03  5.58554312e+03  4.99e-09      65s
  75   2.13e-14 5.31e-12   5.58554382e+03  5.58554334e+03  2.58e-09      65s
  76   2.13e-14 7.04e-12   5.58554366e+03  5.58554353e+03  7.22e-10      65s
  77*  2.84e-14 1.57e-12   5.58554362e+03  5.58554357e+03  2.79e-10      65s
  78*  3.55e-14 4.18e-12   5.58554360e+03  5.58554358e+03  1.16e-10      65s
  79*  3.55e-14 5.29e-12   5.58554360e+03  5.58554360e+03  2.36e-11      66s
  80*  3.55e-14 5.19e-12   5.58554360e+03  5.58554360e+03  3.40e-12      66s
  81*  3.55e-14 1.16e-11   5.58554360e+03  5.58554360e+03  3.27e-13      66s
  82*  3.55e-14 9.05e-12   5.58554360e+03  5.58554360e+03  2.97e-14      66s
Running crossover as requested
    Primal residual before push phase:                  9.82e-08
    Dual residual before push phase:                    1.24e-07
    Number of dual pushes required:                     18968
    Number of primal pushes required:                   2204
Summary
    Runtime:                                            66.29s
    Status interior point solve:                        optimal
    Status crossover:                                   optimal
    objective value:                                    5.58554360e+03
    interior solution primal residual (abs/rel):        1.51e-10 / 8.54e-12
    interior solution dual residual (abs/rel):          8.46e-10 / 1.20e-12
    interior solution objective gap (abs/rel):          2.29e-09 / 4.10e-13
    basic solution primal infeasibility:                1.43e-14
    basic solution dual infeasibility:                  6.89e-16
Ipx: IPM       optimal
Ipx: Crossover optimal
Solving the original LP from the solution after postsolve
Model   status      : Optimal
IPM       iterations: 82
Crossover iterations: 1447
Objective value     :  5.5855435982e+03
HiGHS run time      :         66.51
LP solved for primal

Writing Output
Time elapsed for writing costs is
0.099885792
Time elapsed for writing capacity is
0.000646583
Time elapsed for writing power is
0.021790625
Time elapsed for writing charge is
0.0167645
Time elapsed for writing capacity factor is
0.021259458
Time elapsed for writing storage is
0.009532667
Time elapsed for writing curtailment is
0.019054083
Time elapsed for writing nse is
0.0452305
Time elapsed for writing power balance is
0.053504209
Time elapsed for writing transmission flows is
0.004709417
Time elapsed for writing transmission losses is
0.013975458
Time elapsed for writing network expansion is
0.000157
Time elapsed for writing emissions is
0.050411042
Time elapsed for writing reliability is
0.005842667
Time elapsed for writing storage duals is
0.024307708
Time elapsed for writing commitment is
0.006124458
Time elapsed for writing startup is
0.012590917
Time elapsed for writing shutdown is
0.012514292
Time elapsed for writing fuel consumption is
0.054159667
Time elapsed for writing co2 is
0.019371417
Time elapsed for writing price is
0.005712875
Time elapsed for writing energy revenue is
0.010585041
Time elapsed for writing charging cost is
0.005354792
Time elapsed for writing subsidy is
0.000396208
Time elapsed for writing time weights is
0.000497875
Time elapsed for writing minimum capacity requirement is
0.000146875
Time elapsed for writing net revenue is
0.011134208
Wrote outputs to /Users/mayamutic/Desktop/GenX-Tutorials/Tutorials/example_systems/1_three_zones/results_1
Time elapsed for writing is
0.530491792
emm2 =  CSV.read(joinpath(case,"results_1/emissions.csv"),DataFrame)
1849×5 DataFrame
1824 rows omitted
RowZone123Total
String15Float64Float64Float64Float64
1AnnualSum1.68155e71.41088e74310.213.09286e7
2t1997.1690.00.0997.169
3t2997.1690.00.0997.169
4t3997.1690.00.0997.169
5t4997.1690.00.0997.169
6t5997.1690.00.0997.169
7t6997.1690.00.0997.169
8t7997.1690.00.0997.169
9t8997.1690.00.0997.169
10t9997.1690.00.0997.169
11t101471.460.00.01471.46
12t11997.1690.00.0997.169
13t121115.810.00.01115.81
1838t18372789.351012.990.03802.34
1839t18382835.211012.990.03848.2
1840t18392520.571012.990.03533.56
1841t18401496.47445.850.01942.32
1842t18412571.261012.990.03584.25
1843t18422835.211012.990.03848.2
1844t18432835.211012.990.03848.2
1845t18442625.42960.1840.03585.6
1846t18452506.32342.3910.02848.71
1847t18462277.59342.3910.02619.98
1848t18471960.08524.5260.02484.6
1849t18481566.77342.3910.01909.16
# Pre-processing
tstart = 470
tend = 1500
names_emm = ["Zone 1","Zone 2","Zone 3"]

emm_tot2 = DataFrame([emm2[3:end,2] emm2[3:end,3] emm2[3:end,4]],
    ["Zone 1","Zone 2","Zone 3"])

emm_plot2 = DataFrame([collect((tstart-3):(tend-3)) emm_tot2[tstart:tend,1] repeat([names_emm[1]],(tend-tstart+1))],
    ["Hour","MW","Zone"]);

for i in range(2,3)
    emm_plot_temp = DataFrame([collect((tstart-3):(tend-3)) emm_tot2[tstart:tend,i] repeat([names_emm[i]],(tend-tstart+1))],["Hour","MW","Zone"])
    emm_plot2 = [emm_plot2; emm_plot_temp]
end
emm_plot2  |>
@vlplot(mark={:line},
    x={:Hour,title="Time Step (hours)",labels="Zone:n",axis={values=tstart:24:tend}}, y={:MW,title="Emmissions (Tons)",type="quantitative"},
    color={"Zone:n"},width=845,height=400,title="Emmissions per Time Step by Zone")

svg

We can see how the emmissions, summed over all zones, compare in the following plot:

emm1sum = sum(eachcol(emm_tot));
emm2sum = sum(eachcol(emm_tot2));

Plots.plot(collect((tstart-3):(tend-3)),emm1sum[tstart:tend],size=(800,400),label="Demand Based CO2 Cap",
    xlabel="Time Step (Hours)",ylabel="Emmissions (Tons)",thickness_scaling = 1.1,linewidth = 1.5,
    title="Emmisions per Time Step",xticks=tstart:72:tend)
Plots.plot!(collect((tstart-3):(tend-3)),emm2sum[tstart:tend],label="No CO2 Cap",linewidth = 1.5)

svg

Finally, set the CO2 Cap back to 2:

genx_settings_TZ["CO2Cap"] = 2
YAML.write_file((joinpath(case,"settings/genx_settings.yml")), genx_settings_TZ)