Tutorial 4: Model Generation

Interactive Notebook of the tutorial

To run GenX, we use the file Run.jl. This file will solve the optimization problem and generate the output files as described in the documentation and previous tutorial. It does so by first generating the model, then solving the model, both according to settings described in genx_settings.yml. However, Run.jl only contains one commmand, run_genx_case!(dirname(@__FILE__)). This can be confusing for users viewing the files for the first time. In reality, this function signals many more functions to run, generating and solving the model. This tutorial explains how the model in GenX is generated. The next tutorial will then describe how it is solved.

We'll start by explaining JuMP, the optimization package that GenX uses to generate and solve the model.

Table of Contents

png

JuMP is a modeling language for Julia. It allows users to create models for optimization problems, define variables and constraints, and apply a variety of solvers for the model.

GenX is a Linear Program (LP), which is a form of optimization problem in which a linear objective is minimized (or maximized) according to a set of linear constraints. For more information on LPs, see Wikipedia.

using JuMP
using HiGHS

Let's say we want to build a power grid consisting of and coal and wind plants. We want to decrease the cost of producing energy while still meeting a certain emissions threshold and full grid demand. Coal plants are cheaper to build and run but have higher emissions than wind farms. To find the minimum cost of a power grid meeting these constraints, we construct an LP using JuMP.

\[\begin{aligned} & \min 10 x + 15 y &\text{Objective function (cost)}\\ & \text{s.t.} & \\ & x + y \geq 10 &\text{Grid Demand}\\ & 55x + 70y \leq \ 1000 &\text{Construction constraint}\\ & 40 x + 5 y \leq 200 &\text{Emissions constraint} \\ & x, y \geq 0 &\text{Non-negativity constraints}\\ \end{aligned}\]

The core of the JuMP model is the function Model(), which creates the structure of our LP. Model() takes an optimizer as its input.

power = Model(HiGHS.Optimizer)
A JuMP Model
Feasibility problem with:
Variables: 0
Model mode: AUTOMATIC
CachingOptimizer state: EMPTY_OPTIMIZER
Solver name: HiGHS

The model needs variables, defined using the JuMP function @variable:

@variable(power,x) # Coal
@variable(power,y) # Wind

Using the JuMP function @constraint, we can add the constraints of the model:

@constraint(power, non_neg_x, x >= 0) # Non-negativity constraint (can't have negative power plants!)
@constraint(power, non_neg_y, y >= 0) # Non-negativity constraint

@constraint(power, emissions, 40x + 5y <= 200) # Emisisons constraint
@constraint(power, construction_costs, 55x + 70y <= 1000) # Cost of constructing a new plant

@constraint(power, demand, x + y >= 10) # Grid demand

$x + y \geq 10$

Next, the function @expression defines an expression that can be used in either a constraint or objective function. In GenX, expressions are defined throughout the model generation and put into constraints and the objective function later.

@expression(power,objective,10x+15y)

$ 10 x + 15 y $

Finally, we define the objective function itself:

@objective(power, Min, objective)

$10 x + 15 y$

Our model is now set up!

print(power)

\[\begin{aligned} \min\quad & 10 x + 15 y\\ \text{Subject to} \quad & x \geq 0\\ & y \geq 0\\ & x + y \geq 10\\ & 40 x + 5 y \leq 200\\ & 55 x + 70 y \leq 1000\\ \end{aligned} \]

In the next Tutorial, we go over how to use JuMP to solve the model we've constructed.

When Run.jl is called, the model for GenX is constructed in a similar way, but with many more factors to consider. The next section goes over how the GenX model is constructed before it is solved.

Generate Model

The basic structure of the way Run.jl generates and solves the model is as follows:

png

The function run_genx_case(case) takes the "case" as its input. The case is all of the input files and settings found in the same folder as Run.jl. For example, in example_systems/1_three_zones, the case is:

cd(readdir,"example_systems/1_three_zones")
9-element Vector{String}:
 ".DS_Store"
 "README.md"
 "Run.jl"
 "TDR_results"
 "policies"
 "resources"
 "results"
 "settings"
 "system"

Run_genx_case defines the setup, which are the settings in genx_settings.yml. From there, either run_genx_case_simple(case, mysetup) orrun_genx_case_multistage(case, mysetup) is called. Both of these define the inputs and optimizer. The optimizer is the solver as specified in genx_settings.yml, and the inputs are a variety of parameters specified by the settings and csv files found in the folder. Both of these functions then call generate_model(mysetup, myinputs, OPTIMIZER), which is the main subject of this tutorial.

As in the above example, generate_model utilizes the JuMP functions Model(), @expression, @variable, and @constraints to form a model. This section goes through generate_model and explains how the expressions are formed to create the model.

Arguments

Generate_model takes three arguments: setup, inputs, and optimizer:

To generate the arguments, we have to set a case path (this is set automatically when Run.jl is called):

using GenX
case = joinpath("example_systems/1_three_zones") 
    "example_systems/1_three_zones"

Setup includes the settings from genx_settings.yml along with the default settings found in configure_settings.jl. The function configure_settings combines the two.

genx_settings = GenX.get_settings_path(case, "genx_settings.yml") # Settings YAML file path
writeoutput_settings = GenX.get_settings_path(case, "output_settings.yml") # Set output path
setup = GenX.configure_settings(genx_settings,writeoutput_settings) # Combines genx_settings with defaults
    Configuring Settings
    Dict{Any, Any} with 24 entries:
      "NetworkExpansion"                        => 0
      "TimeDomainReductionFolder"               => "TDR_Results"
      "EnableJuMPStringNames"                   => false
      "Trans_Loss_Segments"                     => 1
      "ModelingtoGenerateAlternativeSlack"      => 0.1
      "Solver"                                  => "HiGHS"
      "Reserves"                                => 0
      "MultiStage"                              => 0
      "OverwriteResults"                        => 0
      "ModelingToGenerateAlternatives"          => 0
      "MaxCapReq"                               => 1
      "MinCapReq"                               => 1
      "CO2Cap"                                  => 2
      "WriteShadowPrices"                       => 1
      "ModelingToGenerateAlternativeIterations" => 3
      "ParameterScale"                          => 1
      "EnergyShareRequirement"                  => 1
      "PrintModel"                              => 0
      "TimeDomainReduction"                     => 1
      "CapacityReserveMargin"                   => 1
      "MethodofMorris"                          => 0
      "StorageLosses"                           => 1
      "IncludeLossesInESR"                      => 0
      "UCommit"                                 => 2

It's here that we create the folder TDR_results before generating the model. This occurs if TimeDomainReduction is set to 1 in the setup. As a reminder, TDR_results is not overwritten when called again. The cell below will delete a preexisting TDR_results folder if it is there.

TDRpath = joinpath(case, setup["TimeDomainReductionFolder"])
system_path = joinpath(case, setup["SystemFolder"])

settings_path = GenX.get_settings_path(case)

if "TDR_results" in cd(readdir,case)
    rm(joinpath(case,"TDR_results"), recursive=true) 
end

if setup["TimeDomainReduction"] == 1
    GenX.prevent_doubled_timedomainreduction(system_path)
    if !GenX.time_domain_reduced_files_exist(TDRpath)
        println("Clustering Time Series Data (Grouped)...")
        GenX.cluster_inputs(case, settings_path, setup)
    else
        println("Time Series Data Already Clustered.")
    end
end
    Clustering Time Series Data (Grouped)...
    Reading Input CSV Files
    Network.csv Successfully Read!
    Demand_data.csv Successfully Read!
    Fuels_data.csv Successfully Read!
    Generators_data.csv Successfully Read!
    Generators_variability.csv Successfully Read!
    Validating time basis
    Capacity_reserve_margin.csv Successfully Read!
    Minimum_capacity_requirement.csv Successfully Read!
    Maximum_capacity_requirement.csv Successfully Read!
    Energy_share_requirement.csv Successfully Read!
    CO2_cap.csv Successfully Read!
    CSV Files Successfully Read In From Example_Systems_Tutorials/SmallNewEngland/OneZone

    Dict{String, Any} with 9 entries:
      "RMSE"          => Dict("Demand_MW_z1"=>1100.54, "NG"=>0.312319, "onshore_wind_…
      "OutputDF"      => DataFrame…
      "ColToZoneMap"  => Dict("Demand_MW_z1"=>1, "battery_z1"=>1, "natural_gas_combin…
      "ClusterObject" => KmeansResult{Matrix{Float64}, Float64, Int64}([-1.38728 -1…
      "TDRsetup"      => Dict{Any, Any}("IterativelyAddPeriods"=>1, "ExtremePeriods…
      "Assignments"   => [1, 1, 1, 1, 2, 2, 2, 2, 2, 3  …  6, 4, 3, 5, 5, 9, 10, 10…
      "InputDF"       => [672×49 DataFrame
      "Weights"       => [673.846, 1010.77, 673.846, 842.308, 842.308, 1853.08, 185…
      "Centers"       => Any[1, 7, 12, 15, 23, 24, 28, 29, 48, 50, 51]

The optimizer argument is taken from setup:

OPTIMIZER =  GenX.configure_solver(settings_path,HiGHS.Optimizer)

The function configure_solver converts the string from "Solver" to a MathOptInterface optimizer so it can be used in the JuMP model as the optimizer. It also goes into the settings file for the specified solver (in this case HiGHS, so 1_three_zones/settings/highs_settings.yml) and uses the settings to configure the solver to be used later.

typeof(OPTIMIZER)
    MathOptInterface.OptimizerWithAttributes

The "inputs" argument is generated by the function load_inputs from the case in run_genx_case_simple (or multistage). If TDR is set to 1 in the settings file, then load_inputs will draw some of the files from the TDR_results folder. TDR_results is produced when the case is run.

inputs = GenX.load_inputs(setup, case)
    Reading Input CSV Files
    Network.csv Successfully Read!
    Demand_data.csv Successfully Read!
    Fuels_data.csv Successfully Read!
    Generators_data.csv Successfully Read!
    Generators_variability.csv Successfully Read!
    Validating time basis
    Capacity_reserve_margin.csv Successfully Read!
    Minimum_capacity_requirement.csv Successfully Read!
    Maximum_capacity_requirement.csv Successfully Read!
    Energy_share_requirement.csv Successfully Read!
    CO2_cap.csv Successfully Read!
    CSV Files Successfully Read In From Example_Systems_Tutorials/SmallNewEngland/OneZone

    Dict{Any, Any} with 66 entries:
      "Z"                   => 1
      "LOSS_LINES"          => [1]
      "RET_CAP_CHARGE"      => Int64[]
      "pC_D_Curtail"        => [50.0]
      "dfGen"               => [4×68 DataFram
      "pTrans_Max_Possible" => [2.95]
      "pNet_Map"            => [1.0;;]
      "omega"               => [4.01099, 4.01099, 4.01099, 4.01099, 4.01099, 4.0109…
      "RET_CAP_ENERGY"      => [4]
      "RESOURCES"           => String31["natural_gas_combined_cycle", "solar_pv", "…
      "COMMIT"              => [1]
      "pMax_D_Curtail"      => [1]
      "STOR_ALL"            => [4]
      "THERM_ALL"           => [1]
      "dfCO2CapZones"       => [1;;]
      "REP_PERIOD"          => 11
      "MinCapReq"           => [5.0, 10.0, 6.0]
      "STOR_LONG_DURATION"  => Int64[]
      "dfCapRes"            => [0.156;;]
      "STOR_SYMMETRIC"      => [4]
      "VRE"                 => [2, 3]
      "RETRO"               => Int64[]
      "THERM_COMMIT"        => [1]
      "TRANS_LOSS_SEGS"     => 1
      "H"                   => 168
      ⋮                     => ⋮

Now that we have our arguments, we're ready to generate the model itself.

Run generate_model

This subsection replicates the arguments in the function generate_model. Note: Running some of these cells for a second time will throw an error as the code will attempt to define a new expression with the name of an existing expression. To run the Tutorial again, clear and restart the kernel.

First, we initialize a model and define the time step and zone variables

EP = Model(OPTIMIZER)  # From JuMP
A JuMP Model
Feasibility problem with:
Variables: 0
Model mode: AUTOMATIC
CachingOptimizer state: EMPTY_OPTIMIZER
Solver name: HiGHS
T = inputs["T"];   # Number of time steps (hours)
Z = inputs["Z"];   # Number of zones

Next, the dummy variable vZERO, the objective function, the power balance expression, and zone generation expression are all initialized to zero:

# Introduce dummy variable fixed to zero to ensure that expressions like eTotalCap,
# eTotalCapCharge, eTotalCapEnergy and eAvail_Trans_Cap all have a JuMP variable

GenX.set_string_names_on_creation(EP, Bool(setup["EnableJuMPStringNames"]))
@variable(EP, vZERO == 0);

# Initialize Power Balance Expression
# Expression for "baseline" power balance constraint
GenX.create_empty_expression!(EP, :ePowerBalance, (T, Z))

# Initialize Objective Function Expression
EP[:eObj] = AffExpr(0.0)

GenX.create_empty_expression!(EP, :eGenerationByZone, (Z, T))

# Energy losses related to technologies
GenX.create_empty_expression!(EP, :eELOSSByZone, Z)
    1×1848 Matrix{Int64}:
     0  0  0  0  0  0  0  0  0  0  0  0  0  …  0  0  0  0  0  0  0  0  0  0  0  0

Next, we go through some of the settings in setup and, if they've been set to be utilized (i.e. have a nonzero value), define expressions from their corresponding input files:

# Initialize Capacity Reserve Margin Expression
if setup["CapacityReserveMargin"] > 0
    GenX.create_empty_expression!(EP, :eCapResMarBalance, (inputs["NCapacityReserveMargin"], T))
end

# Energy Share Requirement
if setup["EnergyShareRequirement"] >= 1
    GenX.create_empty_expression!(EP, :eESR, inputs["nESR"])
end

if setup["MinCapReq"] == 1
    GenX.create_empty_expression!(EP, :eMinCapRes, inputs["NumberOfMinCapReqs"])
end

if setup["MaxCapReq"] == 1
    GenX.create_empty_expression!(EP, :eMaxCapRes, inputs["NumberOfMaxCapReqs"])
end

The other settings will be used later on.

Next, we define the model infrastructure using functions found in src/core. These take entries from inputs and setup to create more expressions in our model (EP). To see what the functions do in more detail, see the source code and core documentation.

# Infrastructure
GenX.discharge!(EP, inputs, setup)

GenX.non_served_energy!(EP, inputs, setup)

GenX.investment_discharge!(EP, inputs, setup)

if setup["UCommit"] > 0
    GenX.ucommit!(EP, inputs, setup)
end

GenX.fuel!(EP, inputs, setup)

GenX.co2!(EP, inputs) 

if setup["OperationalReserves"] > 0
    GenX.operational_reserves!(EP, inputs, setup)
end

if Z > 1
    GenX.investment_transmission!(EP, inputs, setup)
    GenX.transmission!(EP, inputs, setup)
end

if Z > 1 && setup["DC_OPF"] != 0
    GenX.dcopf_transmission!(EP, inputs, setup)
end
    Discharge Module
    Non-served Energy Module
    Investment Discharge Module
    Unit Commitment Module
    Fuel Module
    CO2 Module
    Investment Transmission Module
    Transmission Module

We then define variables and expressions based on the resources in the inputs and setup arguments. The details of these can be found in the src/resources folder and the "resources" folder under Model Function Reference in the documentation:

# Technologies
# Model constraints, variables, expression related to dispatchable renewable resources

if !isempty(inputs["VRE"])
    GenX.curtailable_variable_renewable!(EP, inputs, setup)
end

# Model constraints, variables, expression related to non-dispatchable renewable resources
if !isempty(inputs["MUST_RUN"])
    GenX/must_run!(EP, inputs, setup)
end

# Model constraints, variables, expression related to energy storage modeling
if !isempty(inputs["STOR_ALL"])
    GenX.storage!(EP, inputs, setup)
end

# Model constraints, variables, expression related to reservoir hydropower resources
if !isempty(inputs["HYDRO_RES"])
    GenX.hydro_res!(EP, inputs, setup)
end

if !isempty(inputs["ELECTROLYZER"])
    GenX.electrolyzer!(EP, inputs, setup)
end

# Model constraints, variables, expression related to reservoir hydropower resources with long duration storage
if inputs["REP_PERIOD"] > 1 && !isempty(inputs["STOR_HYDRO_LONG_DURATION"])
    GenX.hydro_inter_period_linkage!(EP, inputs, setup)
end

# Model constraints, variables, expression related to demand flexibility resources
if !isempty(inputs["FLEX"])
    GenX.flexible_demand!(EP, inputs, setup)
end

# Model constraints, variables, expression related to thermal resource technologies
if !isempty(inputs["THERM_ALL"])
    GenX.thermal!(EP, inputs, setup)
end

# Model constraints, variables, expressions related to the co-located VRE-storage resources
if !isempty(inputs["VRE_STOR"])
    GenX.vre_stor!(EP, inputs, setup)
end

Finally, we define expressions and variables using policies outlined in the inputs. These functions can be found in src/policies and in the Emission mitigation policies section of the documentation:

# Policies

if setup["OperationalReserves"] > 0
    GenX.operational_reserves_constraints!(EP, inputs)
end

# CO2 emissions limits
if setup["CO2Cap"] > 0
    GenX.co2_cap!(EP, inputs, setup)
end

# Endogenous Retirements
if setup["MultiStage"] > 0
    GenX.endogenous_retirement!(EP, inputs, setup)
end

# Energy Share Requirement
if setup["EnergyShareRequirement"] >= 1
    GenX.energy_share_requirement!(EP, inputs, setup)
end

#Capacity Reserve Margin
if setup["CapacityReserveMargin"] > 0
    GenX.cap_reserve_margin!(EP, inputs, setup)
end

if (setup["MinCapReq"] == 1)
    GenX.minimum_capacity_requirement!(EP, inputs, setup)
end

if setup["MaxCapReq"] == 1
    GenX.maximum_capacity_requirement!(EP, inputs, setup)
end
    Energy Share Requirement Policies Module
    Capacity Reserve Margin Policies Module
    Minimum Capacity Requirement Module
    Maximum Capacity Requirement Module

    3-element Vector{ConstraintRef{Model, MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.LessThan{Float64}}, ScalarShape}}:
     cZoneMaxCapReq[1] : -vRETCAP[2] + vCAP[2] ≤ 50
     cZoneMaxCapReq[2] : -vRETCAP[3] + vCAP[3] ≤ 100
     cZoneMaxCapReq[3] : -vRETCAP[4] + vCAP[4] ≤ 60

The expressions and variables for the model have all been defined! All that's left to do is define the constraints and objective function.

The Objective Function here is to minimize

@objective(EP,Min,EP[:eObj])
0.17159171428571432 vP_{1,1} + 0.0004010989010989012 vP_{3,1} + 0.0006016483516483517 vP_{4,1} + 0.17159171428571432 vP_{1,2} + 0.0004010989010989012 vP_{3,2} + 0.0006016483516483517 vP_{4,2} + 0.17159171428571432 vP_{1,3} + 0.0004010989010989012 vP_{3,3} + 0.0006016483516483517 vP_{4,3} + 0.17159171428571432 vP_{1,4} + 0.0004010989010989012 vP_{3,4} + 0.0006016483516483517 vP_{4,4} + 0.17159171428571432 vP_{1,5} + 0.0004010989010989012 vP_{3,5} + 0.0006016483516483517 vP_{4,5} + 0.17159171428571432 vP_{1,6} + 0.0004010989010989012 vP_{3,6} + 0.0006016483516483517 vP_{4,6} + 0.17159171428571432 vP_{1,7} + 0.0004010989010989012 vP_{3,7} + 0.0006016483516483517 vP_{4,7} + 0.17159171428571432 vP_{1,8} + 0.0004010989010989012 vP_{3,8} + 0.0006016483516483517 vP_{4,8} + 0.17159171428571432 vP_{1,9} + 0.0004010989010989012 vP_{3,9} + 0.0006016483516483517 vP_{4,9} + 0.17159171428571432 vP_{1,10} + 0.0004010989010989012 vP_{3,10} + 0.0006016483516483517 vP_{4,10} + [[\ldots\text{11038 terms omitted}\ldots]] + 0.00015041208791208792 vCHARGE_{4,1819} + 0.00015041208791208792 vCHARGE_{4,1820} + 0.00015041208791208792 vCHARGE_{4,1821} + 0.00015041208791208792 vCHARGE_{4,1822} + 0.00015041208791208792 vCHARGE_{4,1823} + 0.00015041208791208792 vCHARGE_{4,1824} + 0.00015041208791208792 vCHARGE_{4,1825} + 0.00015041208791208792 vCHARGE_{4,1826} + 0.00015041208791208792 vCHARGE_{4,1827} + 0.00015041208791208792 vCHARGE_{4,1828} + 0.00015041208791208792 vCHARGE_{4,1829} + 0.00015041208791208792 vCHARGE_{4,1830} + 0.00015041208791208792 vCHARGE_{4,1831} + 0.00015041208791208792 vCHARGE_{4,1832} + 0.00015041208791208792 vCHARGE_{4,1833} + 0.00015041208791208792 vCHARGE_{4,1834} + 0.00015041208791208792 vCHARGE_{4,1835} + 0.00015041208791208792 vCHARGE_{4,1836} + 0.00015041208791208792 vCHARGE_{4,1837} + 0.00015041208791208792 vCHARGE_{4,1838} + 0.00015041208791208792 vCHARGE_{4,1839} + 0.00015041208791208792 vCHARGE_{4,1840} + 0.00015041208791208792 vCHARGE_{4,1841} + 0.00015041208791208792 vCHARGE_{4,1842} + 0.00015041208791208792 vCHARGE_{4,1843} + 0.00015041208791208792 vCHARGE_{4,1844} + 0.00015041208791208792 vCHARGE_{4,1845} + 0.00015041208791208792 vCHARGE_{4,1846} + 0.00015041208791208792 vCHARGE_{4,1847} + 0.00015041208791208792 vCHARGE_{4,1848} $

Our constraint is the Power Balance, which is set here to have to meet the demand of the network. The demand is outlined in the last columns of Demand_data.csv, and is set to inputs in from the load_demand_data function within load_inputs, used in run_genx_case.

## Power balance constraints
# demand = generation + storage discharge - storage charge - demand deferral + deferred demand satisfaction - demand curtailment (NSE)
#          + incoming power flows - outgoing power flows - flow losses - charge of heat storage + generation from NACC
@constraint(EP, cPowerBalance[t=1:T, z=1:Z], EP[:ePowerBalance][t,z] == inputs["pD"][t,z])
    1848×1 Matrix{ConstraintRef{Model, MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.EqualTo{Float64}}, ScalarShape}}:
     cPowerBalance[1,1] : vP[2,1] + vP[3,1] + vP[4,1] + vNSE[1,1,1] - vCHARGE[4,1] = 11.162
     cPowerBalance[2,1] : vP[2,2] + vP[3,2] + vP[4,2] + vNSE[1,2,1] - vCHARGE[4,2] = 10.556
     cPowerBalance[3,1] : vP[2,3] + vP[3,3] + vP[4,3] + vNSE[1,3,1] - vCHARGE[4,3] = 10.105
     cPowerBalance[4,1] : vP[2,4] + vP[3,4] + vP[4,4] + vNSE[1,4,1] - vCHARGE[4,4] = 9.878
     cPowerBalance[5,1] : vP[2,5] + vP[3,5] + vP[4,5] + vNSE[1,5,1] - vCHARGE[4,5] = 9.843
     cPowerBalance[6,1] : vP[2,6] + vP[3,6] + vP[4,6] + vNSE[1,6,1] - vCHARGE[4,6] = 10.017
     cPowerBalance[7,1] : vP[2,7] + vP[3,7] + vP[4,7] + vNSE[1,7,1] - vCHARGE[4,7] = 10.39
     cPowerBalance[8,1] : vP[2,8] + vP[3,8] + vP[4,8] + vNSE[1,8,1] - vCHARGE[4,8] = 10.727
     cPowerBalance[9,1] : vP[2,9] + vP[3,9] + vP[4,9] + vNSE[1,9,1] - vCHARGE[4,9] = 11.298
     cPowerBalance[10,1] : vP[2,10] + vP[3,10] + vP[4,10] + vNSE[1,10,1] - vCHARGE[4,10] = 11.859
     cPowerBalance[11,1] : vP[2,11] + vP[3,11] + vP[4,11] + vNSE[1,11,1] - vCHARGE[4,11] = 12.196
     cPowerBalance[12,1] : vP[2,12] + vP[3,12] + vP[4,12] + vNSE[1,12,1] - vCHARGE[4,12] = 12.321
     cPowerBalance[13,1] : vP[2,13] + vP[3,13] + vP[4,13] + vNSE[1,13,1] - vCHARGE[4,13] = 12.381
     ⋮
     cPowerBalance[1837,1] : vP[2,1837] + vP[3,1837] + vP[4,1837] + vNSE[1,1837,1] - vCHARGE[4,1837] = 13.911
     cPowerBalance[1838,1] : vP[2,1838] + vP[3,1838] + vP[4,1838] + vNSE[1,1838,1] - vCHARGE[4,1838] = 13.818
     cPowerBalance[1839,1] : vP[2,1839] + vP[3,1839] + vP[4,1839] + vNSE[1,1839,1] - vCHARGE[4,1839] = 13.71
     cPowerBalance[1840,1] : vP[2,1840] + vP[3,1840] + vP[4,1840] + vNSE[1,1840,1] - vCHARGE[4,1840] = 13.796
     cPowerBalance[1841,1] : vP[2,1841] + vP[3,1841] + vP[4,1841] + vNSE[1,1841,1] - vCHARGE[4,1841] = 15.038
     cPowerBalance[1842,1] : vP[2,1842] + vP[3,1842] + vP[4,1842] + vNSE[1,1842,1] - vCHARGE[4,1842] = 16.088
     cPowerBalance[1843,1] : vP[2,1843] + vP[3,1843] + vP[4,1843] + vNSE[1,1843,1] - vCHARGE[4,1843] = 16.076
     cPowerBalance[1844,1] : vP[2,1844] + vP[3,1844] + vP[4,1844] + vNSE[1,1844,1] - vCHARGE[4,1844] = 15.782
     cPowerBalance[1845,1] : vP[2,1845] + vP[3,1845] + vP[4,1845] + vNSE[1,1845,1] - vCHARGE[4,1845] = 15.392
     cPowerBalance[1846,1] : vP[2,1846] + vP[3,1846] + vP[4,1846] + vNSE[1,1846,1] - vCHARGE[4,1846] = 14.663
     cPowerBalance[1847,1] : vP[2,1847] + vP[3,1847] + vP[4,1847] + vNSE[1,1847,1] - vCHARGE[4,1847] = 13.62
     cPowerBalance[1848,1] : vP[2,1848] + vP[3,1848] + vP[4,1848] + vNSE[1,1848,1] - vCHARGE[4,1848] = 12.388

After this final constraint is defined, generate_model finishes compiling the EP, and run_genx_simple (or multistage) uses solve_model to solve the EP. This will be described in Tutorial 5.